基于游记大数据的华山景区游客行为模式研究  被引量:30

Research on Tourist Travel Patterns in Mountain Huashan Scenic Spot Based on the Big Data from Travel Blogs

在线阅读下载全文

作  者:邵隽[1] 常雪松 赵雅敏[1] Shao Jun;Chang Xuesong;Zhao Yamin

机构地区:[1]北京林业大学园林学院 [2]北京清华同衡规划设计研究院有限公司

出  处:《中国园林》2018年第3期18-24,共7页Chinese Landscape Architecture

摘  要:游记大数据包含旅游者在周边地区出行的行为信息和目的地资源信息,技术进步和社交媒体发展使获取低成本游记大数据成为可能,但目前景区尺度上进行的游记大数据研究较少。研究首次在景区尺度上以华山为研究对象,利用蚂蜂窝和携程网网站上的游记大数据进行数据挖掘。通过语义分析发掘旅游者景区内移动模式和偏好;对游记进行客源地分析,用GIS呈现研究结果;突破单一目的地内部的游客空间模式研究,对华山与所有相关旅游节点进行关联度强弱分析;就游客满意度评价进行情绪分析和不满意方面的深度内容分析。研究结果有望为景区和目的地规划设计提供支持。Big data from travel blogs contains the tourists'travel behavior information and the destination resource information.The development of technology and the popularity of social media have made it possible to access low-cost big data.However,currently there are few research on big data in the scenic area scale.This study is the first one to study on the landscape scale.Using Mountain Huashan Scenic Area as the research object,this study conducted data mining on user contributed travel blogs posted on Mafengwo and Ctrip websites.Firstly,semantic analysis was conducted to explore tourist mobile patterns and preferences within the destination.Then the distribution analysis of the tourist origin areas of the travelogues was conducted,and the results were presented by GIS.Unlike the previous research on the spatial pattern of tourists within a single destination,the relationship between Mountain Huashan and all other related tourism areas was analyzed,and the multi-destination mode of tourists in Huashan was revealed.In addition,the sentiment analysis was conducted on the evaluation of tourist satisfaction,and in-depth content analysis was used on the most dissatisfied evaluation aspects of tourists.The results are expected to provide support for scenic spots and destination planning and design.

关 键 词:风景园林 游记 大数据 景区规划 华山 数据挖掘 

分 类 号:TU986[建筑科学—城市规划与设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象