检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴卿[1] 常允艳 DAI Qing;CHANG Yunyan(College of Architectural Engineering,Chongqing Water Resources and Electric Engineering College,Chongqing 402100;College of Earth Sciences and Information Physics,Central South University,Changsha,Hunan 410083)
机构地区:[1]重庆水利电力职业技术学院建筑工程系,重庆402100 [2]中南大学地球科学与信息物理学院,湖南长沙410083
出 处:《武夷学院学报》2017年第12期26-29,共4页Journal of Wuyi University
基 金:渝水职院科研项目;重庆市教委项目(KJ1603604)
摘 要:利用GNSS载波相位差分技术进行高精度姿态测量时,整周模糊度快速求解是制约测姿性能的核心问题,为改进测姿数据处理中计算效率和精度上的矛盾,提出了一种基于粒子群优化模糊度搜索的GNSS实时测姿算法。新算法应用于整周模糊度搜索,可实现性好,能免除模糊度去相关处理步骤,改善收敛速度慢和陷入局部最优解的问题,提高算法的自适应能力。通过实测实验分析,结果表明:新算法性能稳定效率高,在动态条件下相比基于遗传算法模糊度搜索的测姿算法,对模糊度固定解的成功率提高了约17%,实时性也得以提升,工程应用前景较好。To improve the computational efficiency and accuracy of the attitude determination data processing,this paper presents a method based on particle swarm optimization to particle Real-time GNSS attitude determination.This algorithm is applied to ambiguity search,which can eliminate ambiguity de-correlation process,speed up convergence time,avoid local optimal solution,as well as improve the adaptive ability.The experiment results show that under the dynamic condition,the success rate of the ambiguity fixed solution is improved about 17%compared with genetic algorithm ambiguity search.And the calculation time is also improved,which make it have more engineering application prospects.
关 键 词:模糊度 粒子群优化算法 GNSS测姿 自适应 计算效率
分 类 号:P228.4[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28