检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:佘黎煌 王培人 张石 SHE Li-huang;WANG Pei-ren;ZHANG Shi(School of Computer Science&Engineering,Northeastern University,Shenyang 110169,China)
机构地区:[1]东北大学计算机科学与工程学院,辽宁沈阳110169
出 处:《东北大学学报(自然科学版)》2018年第3期316-319,338,共5页Journal of Northeastern University(Natural Science)
基 金:中央高校基本科研业务费专项资金资助项目(N150403002)
摘 要:压缩感知理论对于解决频率步进连续波探地雷达信号处理过程中存在的采样速率高、存储数据量大、信号处理时间长等问题具有重要意义.针对雷达探测中块目标物体在探测区域不满足稀疏性的问题,提出一种适合块目标的压缩感知重构模型.利用某些稀疏正交基对块目标进行稀疏化处理使其满足稀疏性,将字典矩阵与稀疏矩阵结合形成适用于块目标物体的新观测矩阵,再通过压缩感知凸优化算法求解稀疏化系数,最后把该系数通过稀疏变换得到块目标的反射系数.通过实验仿真验证该方法的可行性,与未稀疏化处理的压缩感知重构模型相比具有更高的精度和分辨率.Compressed sensing(CS)is of great significance to solving such problems as high sampling rate,huge storage pressure and long processing time in the process of stepped-frequency continuous wave ground penetrating radar(SFCW-GPR).Aiming at the problem that block objects can’t meet the sparseness in the detecting area,and using the orthogonal basis for sparse processing of block objects to satisfy the sparsity condition,a new observation matrix that was suitable for block objects was formed by combining the dictionary matrix and sparse matrix.The sparse coefficients were solved by using the compressed sensing convex optimization algorithm.Finally,the reflection coefficients of block objects were obtained through sparse transformation of the sparse coefficients.The simulation results showed that the proposed method is feasible and has higher accuracy and resolution ratio compared with the compressed sensing reconstruction model without sparsity
关 键 词:频率步进连续波探地雷达 字典矩阵 压缩感知 正交基 块目标
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117