检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马坚伟[1] MA Jianwei(Center of Geophysics and Department of Mathematics,Harbin Institute of Technology,Harbin 150001,China)
机构地区:[1]哈尔滨工业大学地球物理中心/数学系,黑龙江哈尔滨150001
出 处:《石油物探》2018年第1期24-27,共4页Geophysical Prospecting For Petroleum
摘 要:压缩感知(Compressed Sensing,CS)突破了传统奈奎斯特-香农采样定律的限制,仅用不完备(远低于香农采样率)的测量即可高精度重构未知目标。简要综述了压缩感知的一些基本概念及其在地球物理勘探中的最新应用进展,包括地震数据不规则采集、处理、成像、反演的新理论和新技术。实际应用中可灵活把握CS的三要素:随机采集(包括炮点和检波器点两方面的随机)、目标的稀疏表达和稀疏约束优化重构的快速算法。重构更高维的目标,需要用的采集数据(百分比)可更少。压缩感知结合深度学习技术,可作为未来的一个发展方向。Compressive sensing(CS)is based on random sampling and sparsity,which bypasses a limitation of the Nyquist Shannon sampling theorem.CS enables the reconstruction of signals from incomplete measurements significantly below the Shannon sampling rate.In this paper,we review the theory of CS and its applications in seismic data acquisition,processing,imaging,and inversion.Three key components for the application of CS are random acquisition(including random distribution of shot and detector points),sparse representation of signals,and fast algorithm for optimal reconstruction with sparse constraints.The percentage of data required for reconstructing targets decreases with increasing dimensions involved.The paper also highlights the potential of combining compressed sensing with deep learning.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3