检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙明波[1] 马秋丽 张炎亮[1] 雷俊辉 SUN Mingbo;MA Qiuli;ZHANG Yanliang;LEI Junhui(School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China)
出 处:《工矿自动化》2018年第3期81-86,共6页Journal Of Mine Automation
基 金:国家自然科学基金资助项目(71271194);河南省基础与前沿技术研究项目(162300410073)
摘 要:针对采煤机滚动轴承故障特征向量提取较困难、多分类效果不理想等问题,提出了基于HGWOMSVM的采煤机轴承故障诊断方法。对轴承故障信号进行小波降噪处理,利用经验模态分解算法对降噪后信号进行分解,并提取能量特征值,作为MSVM的训练集和测试集。采用MSVM进行故障状态识别,并用HGWO算法对MSVM的参数进行优化。试验结果表明,相比于GWO、GA和PSO优化MSVM模型,基于HGWO-MSVM的采煤机轴承故障诊断模型可明显提高故障识别精度和效率。In view of problems of difficult extracting of fault feature vector and unsatisfactory multi-classification effect of shearer rolling bearing,a fault diagnosis method for rolling bearing of shearer based on HGWO-MSVM was proposed.The bearing fault signal is denoised by wavelet and decomposed by empirical mode decomposition algorithm,then energy characteristic value is extracted and used as training set and test set of MSVM.The MSVM is used to identify fault status and parameters of MSVM are optimized by HGWO algorithm.The experimental results show that the fault diagnosis model of shearer bearing based on HGWO-MSVM can obviously improve accuracy and efficiency of fault identification compared with GWO,GA and PSO optimization MSVM model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117