检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:安旭骁 邓洪敏[1] 史兴宇 AN Xuxiao;DENG Hongmin;SHI Xingyu(College of Electronics and Information Engineering,Sichuan University,Chengdu Sichuan 610065,China)
出 处:《计算机应用》2018年第4期935-938,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61174025)~~
摘 要:针对日益严峻的停车难问题,提出一种基于改进卷积神经网络停车场空车位检测方法。首先,根据车位只需用两种状态来表示其占空的特点,对传统卷积神经网络结构进行改进,提出迷你卷积神经网络(MCNN)的概念;然后,通过减少网络参数来减少训练和识别时间,并在网络中加入局部响应归一化层以加强对明度的校正,以及使用小卷积核来获取更多图像细节;最后,对视频帧图进行手动掩码设置,通过边缘检测切割成单个车位图,并使用训练好的MCNN进行车位识别。实验结果表明,与传统机器学习方式相比,基于MCNN的检测方法识别率能提高3~8个百分点,同时网络参数仅为常规使用卷积模型的1/1 000,且在文中所述的几种不同环境中,识别率的均保持在92%以上。实验结果表明,MCNN可移植到低配置摄像头,实现停车场空车位自动检测。For the increasingly severe parking problem,a method of parking lot space detection based on a modified convolutional neural network was proposed.Firstly,based on the characteristic that a parking lot only needs to be denoted by two states,a concept of Mini Convolutional Neural Network(MCNN)was proposed by improving the traditional CNN.Secondly,the number of network parameters was decreased to reduce the training and recognition time,a local response normalization layer was added to the network to enhance brightness correction,and the small convolution kernel was utilized to get more details of the image.Finally,the video frame was manually masked and cut into separate parking lots by edge detection.Then the trained MCNN was used for parking lot recognition.Experimental results show that the proposed method can improve the recognition rate by 3-8 percentage points compared with the traditional machine learning methods,and the network parameters of MCNN is only 1/1000 of the conventionally used convolutional model.In several different environments discussed in this paper,the recognition rate maintains above 92%.The experimental result shows that the MCNN can be transplanted to a low-configuration camera to achieve automatic parking space detection.
关 键 词:车位检测 卷积神经网络 本地响应归一化 掩码 机器学习
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229