检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李钢[1] 李海芳[1] 赵怡 邓红霞[1] LI Gang;LI Haifang;ZHAO Yi;DENG Hongxia(College of Computer Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China)
机构地区:[1]太原理工大学计算机科学与技术学院,太原030024
出 处:《计算机工程与应用》2018年第8期195-200,206,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.61472270)
摘 要:针对现有局部模型在分割灰度不均匀图像时容易陷入局部极小值,导致演化曲线停留在背景处或目标内部无法继续演化从而造成分割失败的现象,提出本模型。该模型在能量泛函中增加局部灰度差异项,通过最大化演化曲线上所有点的邻域内目标和背景的差异来驱动演化曲线越过图像背景处或目标内部,直到准确地停留在目标边缘。实验结果表明提出的模型可以有效地解决局部模型因陷入局部极小值而导致的误分割问题,同时提高对分割灰度不均匀等复杂图像的准确性,并减小对初始轮廓的敏感性。The existing local models are easy to fall into local minimum when segmenting the images with intensity inhomogeneity,which leads to the phenomenon that the evolution curve remains in the background or inside the target and can not continue to evolve and causing the segmentation failure,a model is put forward.The proposed model introduces a local intensity difference term in the energy function to drive the evolution curve across the background or inside the target by maximizing the difference between the target and the background in the neighborhood of all points on the evolution curve until it stably remains at the target edge.The experimental results show that the proposed model in this paper can effectively solve the problem caused by the local minimum in local models and improves the accuracy of complex images such as image inhomogeneity and reduces the sensitivity to the initial contour.
关 键 词:活动轮廓模型 局部灰度差异 图像分割 水平集 区域可变的能量拟合(RSF)模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.222.1