检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨丽坤 雷伟伟[2] YANG Likun;LEI Weiwei(Zhengzhou Industry and Trade School,Zhengzhou 450007,China;School of Geodesy&Land information,Henan Polytechnic University,Jiaozuo 454000,China)
机构地区:[1]郑州工业贸易学校,河南郑州450007 [2]河南理工大学测绘与国土信息工程学院,河南焦作454000
出 处:《测绘科学技术学报》2017年第6期560-563,共4页Journal of Geomatics Science and Technology
基 金:国家自然科学基金项目(41272373);国家测绘地理信息局测绘基础研究基金项目(15-01-05)
摘 要:计算子午线弧长与底点纬度本质上是解算标准的一阶常微分方程。为了研究利用常微分方程数值解法进行子午线弧长与底点纬度计算的可行性与可靠性,选取大地纬度自0°起以步长1″依次增大至90°,共计324 001个样本数据,分别基于求解常微分方程的Euler算法、改进的Euler算法以及二阶、三阶、四阶Runge-Kutta算法对其进行了数值计算。并与传统算法结果进行比较,从数值算法结果的精度、运算速度、自洽程度等方面对数值算法质量进行评价。计算结果表明:利用常微分方程数值解法求解子午线弧长与底点纬度的方法,能够得到与传统算法精度一致的结果;且数值算法运算速度大约是传统算法的2倍,其中四阶Runge-Kutta算法的精度与自洽程度最高。这表明,常微分方程数值解法比传统算法更适用于子午线弧长和底点纬度的大数据计算。The calculation of meridian arc length and latitude of pedal is to resolve the standard first order ordinary differential equation essentially.In order to study the feasibility and reliability of calculating the meridian arc length and latitude of pedal based on the numerical solution of ordinary differential equation,it is selected the geodetic latitude from 0°to 90°with the step of 1″,in total of 324 001 sample data,the numerical calculation of this equation is carried out based on Euler algorithm,improved Euler algorithm and the two order,three order,and four order Runge-Kutta algorithm.Then comparing with the traditional algorithm,the quality of these algorithms are evaluated through the accuracy of the calculation results,computation speed and self-consistency degree.The results show that the method of calculating the meridian arc length and latitude of pedal by using the numerical solution of ordinary differential equation can obtain the result that is consistent with the precision of traditional algorithm,and the speed of numerical algorithm is about 2 times of that of the traditional algorithm and the four order Runge-Kutta algorithm has the highest accuracy and self-consistency.This indicates that the numerical solution of ordinary differential equation is more suitable for the big data calculation of meridian arc and latitude of pedal.
关 键 词:常微分方程 Euler算法 Runge-Kutta算法 算法精度 算法速度 自洽程度
分 类 号:P226[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249