结合组SIFT特征和多元词袋模型的图像检索方法  被引量:4

Image retrieval method combining with group SIFT features and multi-bag-of-words model

在线阅读下载全文

作  者:栾咏红[1] 汤晓燕[1] 张军朝[2] LUAN Yong-hong;TANG Xiao-yan;ZHANG Jun-chao(Software and Service Outsourcing College,Suzhou Institute of Industrial Technology,Suzhou 215104,China;College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]苏州工业职业技术学院软件与服务外包学院,江苏苏州215104 [2]太原理工大学电气与动力工程学院,山西太原030024

出  处:《计算机工程与设计》2018年第4期1142-1147,共6页Computer Engineering and Design

基  金:国家自然科学基金项目(61303146);苏州市科技计划项目前瞻性应用研究基金项目(SYG201653);山西省重大专项基金项目(20131101029)

摘  要:针对现有图像检索方法召回率低的问题,提出一种结合组尺度不变特征变换(SIFT)特征和多元词袋模型的图像检索方法。采用间隔采样方式抽取图像中的关键点,提取SIFT特征;依据图像的空间相关性,将各关键点及8邻接关键点的SIFT特征进行组合,构建组SIFT特征;针对组SIFT特征,在经典词袋模型的基础上,加入Dirichlet函数和组混合编码,构建多元词袋模型,提取图像特征向量;采用卡方距离度量和非对称距离计算方法快速计算特征向量之间的相似度,得到图像检索结果。仿真结果表明,该方法的召回率指标明显高于对比方法,查准率指标也有提高。Facing the problem of low recall performance of existing image retrieval methods,an image retrieval method combining with group scale-invariant feature transform(SIFT)features and multi-bag-of-words model was proposed.Key points in an image were selected using interval sampling mode,and SIFT features were extracted for them.SIFT features of each key point were combined with its 8-adjacent key points according to spatial correlation of images,and group SIFT features were built.On the basis of classic bag-of-words model,Dirichlet function and group mixing coding were added for these group SIFT features,and multi-bag-of-words model was built for extracting feature vector from an image.Chi-square distance metric and asymmetric distance calculation method were used for fast computing the similarity between two feature vectors,and results of image retrieval were obtained.Simulation results show that,the recall value of the proposed method is significantly higher than the comparative methods,and the precision value is also improved.

关 键 词:图像检索 尺度不变特征变换 词袋模型 DIRICHLET函数 卡方距离 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象