基于RGB通道下模糊核估计的图像去模糊  被引量:11

Image deblurring with blur kernel estimation in RGB channels

在线阅读下载全文

作  者:徐弦秋 刘宏清[1] 黎勇[1] 周翊[1] XU Xianqiu;LIU Hongqing;LI Yong;ZHOU Yi(Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)

机构地区:[1]重庆邮电大学移动通信技术重庆市市级重点实验室,重庆400065

出  处:《重庆邮电大学学报(自然科学版)》2018年第2期216-221,共6页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:国家自然科学基金(61401050;61501072);重庆市基础科学与前沿技术研究(cstc2014jcyj A40017;cstc2014jcyj A40027;cstc2015jcyj A40027)~~

摘  要:图像去模糊旨在从受损图像中恢复出清晰图像。由于模糊过程未知,精确地估计出模糊核函数,成为得到清晰复原图像的关键。对于彩色图像来讲,现存的方法只考虑在灰度域估计模糊核。事实上,各个通道的色彩分量图所受到的模糊核函数的影响是不同的。为此,提出一种获得更加精确的模糊核的方法,利用彩色图像的3个色彩通道(RGB channels)代替灰度域分别进行模糊核估计,并将估计出的模糊核应用到基于细稀疏表示的复原模型中进行去模糊处理。仿真实验表明,提出的方法比目前的方法能够获得更好的图像复原效果。Image deblurring aims to recover the clear image from the damaged image.The main factor of the image deblurring is to precisely estimate the blur kernel in the unknown blurring process.For color images,the most existing blind image deblurring approaches only estimate the blur kernel in the gray domain.In fact,the blur effects for each color channel are usually different.This paper proposes a new approach to acquire more precise blur kernels by estimating blur kernels through RGB channels independently instead of just using the gray domain,and then the group sparse representation model is used to perform blur kernel estimation in each channel.The numerical results demonstrate that the proposed approach achieves better performance compared with the state-of-the-art methods.

关 键 词:模糊核估计 RGB通道 组稀疏 图像去模糊 

分 类 号:TN911.22[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象