检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晚笛 陈峰[1,2] 王子甲[1] 汪波 王挺 ZHANG Wandi;CHEN Feng;WANG Zijia;WANG Bo;WANG Ting(School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China;Beijing Engineering and Technology Research Center of Rail Transit Line Safety and Disaster Prevention,Beijing Jiaotong University,Beijing 100044,China;Beijing Transportation Information Center,Beijing 100073,China)
机构地区:[1]北京交通大学土木建筑工程学院,北京100044 [2]北京交通大学北京市轨道交通线路安全与防灾工程技术研究中心,北京100044 [3]北京市交通信息中心,北京100073
出 处:《铁道学报》2018年第4期9-17,共9页Journal of the China Railway Society
基 金:国家自然科学基金(51408029)
摘 要:乘客出行规律对城市轨道交通运营管理至关重要,而不同时间粒度下观测到的客流规律差异较大。以往研究缺乏多时间粒度车站层级客流规律的量化研究。本文基于刷卡数据分析不同时间尺度下地铁出行规律的相似性。构建客流时间序列模型和相似性度量方法,使用连续五周北京地铁刷卡数据分别度量1 min到720min共16个时间粒度下,进站客流和OD客流与历史同期的相似性大小,并基于度量结果给出一定精度要求下预测短时进站量和OD量时的最小时间粒度推荐值,以综合相似性指标对全网车站的可预测等级进行划分。多角度统计分析结果表明,工作日客流与历史同期相似性较大,高峰比平峰、早高峰比晚高峰相似性大。The regularity of passenger travel is important to the operation and management of urban rail transit.There is a great difference of observed passenger flow regularity in different time granularities.Given insufficient quantitative research in the past on the station-level passenger flow regularity at multi time scale,this paper analyzed the similarity of passenger travel rules based on smart card data at different time granularities.Firstly,the time series model and the similarity measure method were constructed.Then,the smart card data for five consecutive weeks of Beijing Metro were used to measure the similarity of inbound passenger flow and OD passenger flow during the same period of history over a scale of 16 time granularities from 1 minute to 720 minutes.Based on the results of similarity measurement,the minimum time granularity was recommended for the prediction of short term inbound traffic flow and OD passenger flow under certain precision requirements.Finally,the predictable levels of the stations of the whole network were classified by the comprehensive similarity index.The results of multi-perspective statistical analysis show a great similarity between passenger flow and historical flow during weekdays.The peak hour passenger flow similarity is greater than that of off-peak hours.The morning peak hour passenger flow similarity is greater than that of afternoon peak hours.
分 类 号:U293.5[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30