检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常青[1] 邵臣 胡越 CHANG Qing;SHAO Chen;HU Yue(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
机构地区:[1]华东理工大学信息科学与工程学院,上海200237
出 处:《华东理工大学学报(自然科学版)》2018年第2期254-259,共6页Journal of East China University of Science and Technology
摘 要:数字广告图像识别与数据分析在广告精准推送、收视行为分析、商业网络搜索等各大应用领域有着重要的应用。针对网络图片搜索的实际需求,结合图像特征提取识别技术,本文对数字媒体广告图像的识别和分类方法进行了研究。针对传统的基于空间金字塔匹配的视觉词典模型算法匹配条件较为苛刻、缺乏抗形变能力等局限性,在视觉词典模型算法的基础上,引入视觉特征词典特征点的空间位置信息,使用混合高斯模型实现了自适应的空间区域划分。实验结果表明,识别算法的抗形变能力和识别精度在标准库及本地广告库的测试中均能取得较好的测试结果。Digital advertising image recognition and data analysis have a wide application in precise advertising push,viewing behavior analysis,and business web search.This paper studys the recognition and classification of digital media advertising images by analyzing the actual characteristics of advertising images and utilizing image feature extraction technology.Aiming at the shortcomings of the traditional visual word bag based on spatial Pyramid matching algorithm,e.g.,the harsh matching condition and the lack of deformation resistance,this paper uses Gaussian mixture model to achieve the adaptive spatial zoning,by introducing the spatial location information of the feature points of the visual word bag.It is shown that the deformation resistance ability and the recognition accuracy in the proposed algorithm can attain good results in the test of the standard database and the local advertising database.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94