检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张巧燕[1] 林民[1] 张树钧[1] Zhang Qiaoyan;Lin Min;Zhang Shujun(College of Computer&Information Engineering,Inner Mongolia Normal University,Hohhot 010022,China)
机构地区:[1]内蒙古师范大学计算机与信息工程学院,呼和浩特010022
出 处:《计算机应用研究》2018年第1期130-134,139,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(61562068;61640204);内蒙古自然科学基金资助项目(2015MS0629;2014MS0617);内蒙古民委蒙古文信息化专项扶持子项目(MW-2014-MGYWXXH-01);内蒙古自治区高等学校科学研究项目(NJZY028);内蒙古师范大学引进人才科研启动经费项目(2014YJRC036);内蒙古师范大学校级基金资助项目(2015YBXM002)
摘 要:针对为检索服务的语义知识库存在的内容不全面和不准确的问题,提出一种基于维基百科的软件工程领域概念语义知识库的构建方法。以SWEBOK V3概念为标准,从维基百科提取概念的解释文本,并抽取其关键词表示概念的语义;通过概念在维基百科中的层次关系、概念与其他概念的解释文本关键词之间的链接关系、不同概念解释文本关键词之间的链接关系构成概念语义知识库;利用LDA主题模型分别与TF-IDF、Text Rank算法相结合的两种方法抽取关键词;对构建好的概念语义知识库用随机游走算法计算概念间的语义相似度。将实验结果与人工标注结果对比后发现,本方法构建的语义知识库语义相似度准确率能够达到84%以上,充分验证了所提方法的有效性。The problem of incomplete and inaccurate content for the retrieval of semantic knowledge base existed,this paper proposed a method of constructing the concept semantic knowledge base in the field of software engineering based on Wikipedia.First,taking the concept of SWEBOK V3 as the standard,it extracted the interpretation of the concept from Wikipedia and extracted the keywords to represent the semantic meaning of the concept.Second,through hierarchical relationships of the concept in Wikipedia,link relationships between concepts and explanatory text of other concepts and link relationships between explanatory texts of different concepts,it built concept semantic knowledge base.Then,it combined the LDA topic model with the two methods that were called TF-IDF algorithm and TextRank algorithm respectively serve the keywords extraction.Finally,it calculated the semantic similarity between concepts by the random walk algorithm for the construction of the concept semantic knowledge base.The experimental results were compared with the manual annotation results.The semantic similarity of knowledge base constructed by this method can reach more than 84%.The effectiveness of the proposed method is verified.
关 键 词:维基百科 语义知识库 关键词抽取 语义相似度计算 随机游走
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171