检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙全玲 吕虹 陈万里 戚鹏 Sun Quanling;Lyu Hong;Chen Wanli;Qi Peng(School of Electronic&Information Engineering,Anhui Jianzhu University,Hefei 230601,China)
机构地区:[1]安徽建筑大学电子与信息工程学院,合肥230601
出 处:《计算机应用研究》2018年第1期245-247,256,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61372094);安徽省科技厅资助项目(KJ2017JD08;KJ20155D08)
摘 要:m子序列是根据m序列的状态转换特征,通过交叉改变状态转换次序而形成新的序列。通过随机性测试软件(NIST)验证m子序列具有与m序列相似的随机性,使用BM算法可以得出这种伪随机序列具有非常高的线性复杂度,同时验证了其补序列也具有非常高的线性复杂度,并说明m子序列具有良好的线性复杂度谱,抗线性攻击能力强。m子序列的数量庞大,一个周期为2~n-1的m序列,改变反馈函数就可以至少产生(2^(n-1)-1)(2^(n-1)-2)/6个m子序列。产生m子序列的反馈函数经证明具有良好的代数免疫度,抗代数攻击能力较强。m子序列具有良好的密码学性质,应用前景良好。The m subsequence is formed by changing the state transitions of m sequence.This paper verified that the m subsequence had random similarity with m sequence by the random test software(NIST).It verified that the m subsequence had very high linear complexity using BM algorithm,and verified the complementary sequence also had very high linear complexity.The m subsequences had good linear complexity spectrum.It had strong ability to resist linear attack.It had a large number of m subsequence by changing feedback functions of m sequence,m sequence,such as a cycle of 2 n-1 could produce(2 n-1-1)×(2 n-1-2)/6 m subsequences.The feedback function of m subsequences have good algebraic immunity and strong ability of resisting of algebraic attack.The m subsequences has good cryptographic properties and good application prospects.
关 键 词:m子序列 M序列 状态转换 线性复杂度 代数免疫度
分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.67.245