Geochemical evolution of the Mangalwar Complex,Aravalli Craton,NW India:Insights from elemental and Nd-isotope geochemistry of the basement gneisses  

Geochemical evolution of the Mangalwar Complex, Aravalli Craton,NW India:Insights from elemental and Nd-isotope geochemistry of the basement gneisses

在线阅读下载全文

作  者:Iftikhar Ahmad M.E.A.Mondal Rajneesh Bhutani M.Satyanarayanan 

机构地区:[1]Department of Geology,Aligarh Muslim University,Aligarh 202002,India [2]Department of Earth Sciences,Pondicherry University,Puducherry 605014,India [3]CSIR-National Geophysical Research Institute,Hyderabad 500007,India

出  处:《Geoscience Frontiers》2018年第3期931-942,共12页地学前缘(英文版)

摘  要:The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to

关 键 词:Aravalli CRATON Mangalwar COMPLEX Nd-isotope geochemistry Grey GNEISSES SANUKITOID High-K granitoids 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象