基于Bayes估计和数据流间功率分配的联合干扰相位对齐算法  被引量:4

Robust Joint Interference and Phase Alignment Algorithm Based on Bayes Estimation and Power Allocation Among Signal Flows

在线阅读下载全文

作  者:谢显中[1] 张森林[1] 李丹[1] 雷维嘉[1] XIE Xian-zhong;ZHANG Sen-lin;LI Dan;LEI Wei-jia(Institute of Personal Communications,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学个人通信研究所,重庆400065

出  处:《电子学报》2018年第4期984-991,共8页Acta Electronica Sinica

基  金:国家自然科学基金(No.61271259;No.61301123;No.61471076);重庆市教委科学技术研究项目(No.KJ120501;No.KJ130536);长江学者和创新团队发展计划(No.IRT1299);重庆市科委重点实验室专项经费(CSTC)

摘  要:针对信道状态信息(CSI)存在时延和误差的情况,本文提出了适用于多小区MIMO-BC的基于Bayes估计和数据流间功率分配的联合干扰相位对齐算法.首先,发送端通过Bayes估计获得当前CSI的最佳估计;其次,通过最大化期望信号功率与小区间干扰功率的比值来设计干扰抑制矩阵;而在反向通信时,通过最大化信干比来设计预编码;进一步地,结合注水算法来优化功率分配.最后,采用相位对齐将数据流间的干扰旋转到目标接收数据流的信号空间中,进而增强目标数据流的接收功率.仿真表明,无论是在理想CSI还是时延误差CSI,本文算法较其他算法都有一定的性能优势.In the case of the delay and error Channel State Information(CSI),a robust joint interference and phase alignment algorithm based on Bayes estimation and power allocation among signal flows is proposed for multi-cell MIMO-BC.Firstly,the best prediction of the current CSI is obtained through Bayes estimation by the senders.Secondly,interference suppression matrix is designed through maximizing signal to inter-cell interference plus noise ratio in the forward link,and the pre-coding matrix is designedthrough maximizing SINR in the reverse link.Further,the water-filling power allocation is used to optimize power allocation among signal flows.Finally,the interference among the data flows is rotated into signal space which improves thereceived power.Under the conditions of the perfect CSI and the delay and errorCSI,the simulation results verify that the proposed algorithm improves the performance of system compared with the existing algorithms.

关 键 词:稳健干扰对齐 时延误差 BAYES估计 用户数据流间功率分配 相位对齐 

分 类 号:TN929.53[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象