检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙通[1,2] 莫欣欣 刘木华 SUN Tong;MO Xin-xin;LIU Mu-hua(Key Laboratory of Jiangxi University for Optics-Electronics Application of Bio materials,College of Engineering,Jiangxi Agricultural University;Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province,Nanchang 330045,China)
机构地区:[1]江西农业大学工学院,江西省高校生物光电技术及应用重点实验室 [2]江西省果蔬采后处理关键技术及质量安全协同创新中心,江西南昌330045
出 处:《光谱学与光谱分析》2018年第5期1406-1411,共6页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(31401278);江西省自然科学基金项目(20151BAB204025;20161BAB213096);留学人员科技活动项目(2012)资助
摘 要:利用可见/近红外半透射光谱技术对未剥皮(完整)和剥皮脐橙的可溶性固形物(SSC)进行检测,探索果皮对脐橙SSC检测精度的影响。采用QualitySpec型光谱仪获取未剥皮和剥皮脐橙在350~1 000nm波段的可见/近红外光谱,并从光谱和模型性能两方面分析果皮的影响。对未剥皮和剥皮脐橙平均光谱进行比较,并提取前20个主成分进行多元方差分析;应用偏最小二乘(PLS)回归结合不同预处理方法分别建立未剥皮和剥皮脐橙SSC的预测模型,对预测模型性能进行比较,并对预测集样本的预测残差平方进行方差分析。结果表明,在5%置信水平下,果皮对脐橙SSC检测精度的影响是显著的。未剥皮和剥皮脐橙SSC的最优PLS模型的预测集相关系数和预测均方根误差分别为0.888,0.456%和0.944,0.324%。Visible/near infrared(Vis/NIR)spectroscopy was used to determine soluble solidcontent(SSC)of navel oranges with pericarp and without pericarp,and the effect of pericarp on prediction accuracy of SSC of navel oranges was investigated.In addition,Vis/NIR spectra of navel oranges with pericarp and without pericarp were acquired by a QualitySpec spectrometer in the wavelength range of 350~1 000 nm,andthe effect of pericarp was analyzed from two aspects of spectrum and model performance.The average spectra of navel oranges with pericarp and without pericarpwere compared,and 20 principal components that obtained were used for multivariate analysis of variance(MANOVA).Moreover,partial least squares(PLS)regressioncombined with different pretreatment methods was used to develop calibration models of SSC for navel oranges with pericarp and without pericarp.Furthermore,the performance of models was compared,and square of prediction residuals of samples in prediction set were used for analysis of variance(ANOVA).The results indicate that the effect of pericarp on prediction accuracy of soluble solid content in navel oranges is significant at 5%confidence level.The correlation coefficients of prediction set and root mean square errors of prediction(RMSEPs)of PLS of SSC for navel oranges with pericarp and without pericarp are 0.888,0.456%and0.944,0.324%,respectively.
关 键 词:可见/近红外 果皮影响 检测精度 可溶性固形物 方差分析 脐橙
分 类 号:S123[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.25.53