检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常红伟 夏克文 白建川 牛文佳 武盼盼 CHANG Hongwei;XIA Kewen;BAI Jianchuan;NIU Wenjia;WU Panpan(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China;Key Lab of Big Data Computation of Hebei Province,Tianjin 300401,China)
机构地区:[1]河北工业大学电子信息工程学院,天津300401 [2]河北省大数据计算重点实验室,天津300401
出 处:《计算机工程与应用》2018年第10期99-104,共6页Computer Engineering and Applications
基 金:河北省自然科学基金(No.E2016202341);河北省高等学校科学技术研究项目(No.BJ2014013)
摘 要:针对粒子群优化算法在处理信息系统中属性约简收敛速度慢、早熟的问题,提出了一种结合云模型的量子粒子群优化算法(CQPSO)的属性约简方法。改进量子粒子群优化算法,即利用量子粒子群算法的量子行为来加快收敛速度;引入云模型控制粒子种群在不同状态下进行寻优;根据属性依赖度等性质构造属性约简数学模型;采用CQPSO算法对其进行求解,得到约简结果。实验中采用标准测试函数对CQPSO算法进行仿真对比,验证了CQPSO算法性能优于量子PSO算法;采用UCI标准数据库的典型例子进行属性约简测试,结果表明提出的属性约简方法优于现有约简方法,其计算速度快、识别精度高。In the processing information system,the particle swarm optimization algorithm is applied for the minimum attribute reduction,which is slow and easy to fall into local optimum.Accordingly,this paper proposes a quantum-behaved particle swarm optimization algorithm combined with cloud model(CQPSO)to reduce the number of attributes in data set.First,the speed of convergence is accelerated by using a quantum behavior of QPSO algorithm;and the cloud model is introduced into QPSO to control different particle swarms in different states;then,the attribute reduction mathematical model is constructed according to property dependency and other properties;finally,the CQPSO algorithm is used to solve the problem and achieve the reduction results.In this experiment,the CQPSO algorithm is simulated and compared by the standard test function,which shows that the CQPSO algorithm performance is better than the quantum-behaved PSO algorithm.And the UCI standard database is used to perform attribute reduction tests.The results show that the proposed attribute reduction method is superior to the existing reduction method,and its calculation speed is fast and the recognition precision is high.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117