检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冬磊[1] 张智禹 尹爱军[2] WANG Dong-lei;ZHANG Zhi-yu;YIN Ai-jun(Institute of Chemical Materials,China Academy of Engineering Physics,Chengdu 621900,China;State Key Laboratory of Mechanical Transmissions,College of Mechanical Engineering,Chongqing University,Chongqing 400044,China)
机构地区:[1]中国工程物理研究院化工材料研究所,成都621900 [2]重庆大学机械工程学院,机械传动国家重点实验室,重庆400044
出 处:《装备环境工程》2018年第7期29-32,共4页Equipment Environmental Engineering
基 金:国防预研基金项目(9140A17050115JW20001);重庆市人工智能技术创新重大主题专项重点项目(cstc2017rgzn-zdyfx0007)
摘 要:目的优化双基球扁药成球工艺参数,解决由于目前双基球扁药理论研究不充分、控制模型不明确、生产工艺参数调控依靠人工经验所导致的药品成球后直径、弧厚偏差大的问题。方法利用BP神经网络在处理复杂非线性映射问题上的强大的能力,对成球关键工艺参数与成球质量指标进行建模,并应用成球工艺过程仿真数据对其进行训练,将训练得到的BP神经网络模型用于优化成球工艺参数。同时利用仿真数据进行检验模型的可靠性。结果训练后BP神经网络均方误差为0.001,成球直径误差率为1.27%,成球弧厚误差率为2.08%,成球质量参数误差均很小,可以满足工艺要求。结论该BP神经网络模型具有较高精度,适用于含能材料工艺优化,提出的成球工艺优化方法能有效降低成球试制成本,缩短生产周期。Objective To optimize pelletization process parameters of double-based oblate spherical powder,and solve the problems of large deviation in diameter and web size of double-based oblate spherical powder after pelletization process caused by insufficient theoretical research,unclear control model and regulation of production process parameters depended on the artificial experience.Methods The ability of BP(back propagation)neural network in handling complex nonlinear mapping problems was applied to build model between pelletization process parameters and pelletization quality index,and train the model with pelletization process simulation data.The BP neural network model obtained in training was used to optimize the process parameters.At the same time,the simulation data was used to test the reliability of the model.Results After training,the mean square error of the BP neural network was 0.001,the error rate of the pelletization diameter was 1.27%with 2.08%for web size.The errors of the quality parameters were small.The technological requirements were met.Conclusion The BP neural network model has high precision and is suitable for the optimization of the energetic material process.The proposed palletization process optimization method can effectively reduce the trial cost of the palletization and shorten the production cycle.
分 类 号:TJ104[兵器科学与技术] V232.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.200.110