检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑松鹏 黄志波[1] 李辉 汪勇志 ZHENG Songpeng;HUANG Zhibo;LI Hui ;WANG Yongzhi(College of Jinshan,Fujian Agriculture and Forestry University,Fuzhou 350002)
出 处:《福建建筑》2018年第7期120-123,共4页Fujian Architecture & Construction
基 金:福建农林大学金山学院院级服务产业特色专业项目(Y160402);2017年院级大学生校外实践教育基地建设项目(S170401)
摘 要:房屋在爆破振动作用下的损害状况是当前爆破工程界的研究热点和难点。考虑爆破振动特征参量和房屋结构特性的影响,引入进化神经网络,并通过对神经网络结构参数和权值的优化,建立爆破振动对房屋破坏程度的预测模型。研究表明,该方法预测结果与房屋破坏情况吻合较好,其量化的结果对准确评判爆破振动对房屋影响具有重要意义。Presently,housing damaging situation under blast vibration is a hot and difficult issue among the field of Blasting Engineering.Taking the characteristic parameters of blasting vibration and housing structural characters into consideration,Evolutionary Neural Network was put forward as well;plus,through optimizing the structural parameters and weights of Neural Network,a model predicting the housing damaging degree under blasting vibration was found.Researches indicate that the predicted results can keep consistent with the real destruction of housing very well.Hence,the quantitative results of this approach can provide basis for judging the degree of housing destruction,which shows important significance in accurately judging the influences on housing caused by blasting.
分 类 号:TU751.9[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117