Calcareous nannofossil changes linked to climate deterioration during the Paleocene-Eocene thermal maximum in Tarim Basin,NW China  被引量:8

Calcareous nannofossil changes linked to climate deterioration during the Paleocene-Eocene thermal maximum in Tarim Basin, NW China

在线阅读下载全文

作  者:Wenxin Cao Dangpeng Xi Mihaela C.Melinte-Dobrinescu Tian Jiang Sherwood W.Wise Jr. Xiaoqiao Wan 

机构地区:[1]State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Beijing 100083,China [2]National Institute of Marine Geology and Geo-ecology(GEOECOMAR),Bucharest 70318,Romania [3]Department of Earth,Ocean&Atmospheric Science,Florida State University,Tallahassee,FL 32306,United States

出  处:《Geoscience Frontiers》2018年第5期1465-1478,共14页地学前缘(英文版)

基  金:financially supported in part by funds from the State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (GBL215010);National Basic Research Program of China (973 Program, No. 2012CB822002);the National Natural Science Foundation of China (Nos. 41302008, 41172037);the Fundamental Research Funds for the Central Universities (53200859490);Science and Technology Innovation Fund of the China University of Geoscience (Beijing);the Beijing Higher Education Young Elite Teacher Project (YETP0665)

摘  要:The Paleocene-Eocene Thermal Maximum(PETM) event was a dramatic global warming w55.93 Ma ago that resulted in biological extinction events, lithological changes, and major deviations in σ13 C and σ18 O.The southwestern Tarim Basin of China exposes successive Paleogene strata as a result of Tethys evolution and is considered an ideal region for PETM research.Based on calcareous nannoplankton biostratigraphy, we also used stable isotopes and XRD to analyse the Paleocene-Eocene transition in the Tarim Basin. At the Bashibulake Section, the PETM interval is characterized by(1) an abrupt negative shifts in σ13 C_(org), σ13 C_(carb) and σ18 O(-3%, -4.5% and -3%respectively);(2) an obvious negative correlation between the K-mode(Discoaster, Fasciculithus, Ericsonia, Sphenolithus and Rhomboaster) and r-mode(Biscutum, Chiasmolithus, Toweius) nannofossil taxa coincident with a robust Rhomboaster-Discoaster assemblage; and(3) a significant increase in the percentage of detrital input along with an increase in gypsum content. In the upper part of the Qimugen Formation Micrantholithus and Braarudosphaera are commonly found right up to the top where most of the nannofloras suffer a sharp decrease. In the overlying Gaijitage Formation, calcareous nannofossils disappear completely. These events indicate that the southwestern Tarim Basin was a warm shallow continental shelf during the deposition of the Qimugen Formation. From the early Eocene, the environment changed conspicuously. Evaporation increased and sea level fell, which led to an acid climate.This climate mode continued within the youngest unit studied, the Gaijitage Formation, characterized by the deposition of thick evaporates. Consequently, most of the marine plankton, i.e. calcareous nannoplankton, became disappear, because of the significant climate shift.The Paleocene-Eocene Thermal Maximum(PETM) event was a dramatic global warming w55.93 Ma ago that resulted in biological extinction events, lithological changes, and major deviations in σ13 C and σ18 O.The southwestern Tarim Basin of China exposes successive Paleogene strata as a result of Tethys evolution and is considered an ideal region for PETM research.Based on calcareous nannoplankton biostratigraphy, we also used stable isotopes and XRD to analyse the Paleocene-Eocene transition in the Tarim Basin. At the Bashibulake Section, the PETM interval is characterized by(1) an abrupt negative shifts in σ13 C_(org), σ13 C_(carb) and σ18 O(-3%, -4.5% and -3%respectively);(2) an obvious negative correlation between the K-mode(Discoaster, Fasciculithus, Ericsonia, Sphenolithus and Rhomboaster) and r-mode(Biscutum, Chiasmolithus, Toweius) nannofossil taxa coincident with a robust Rhomboaster-Discoaster assemblage; and(3) a significant increase in the percentage of detrital input along with an increase in gypsum content. In the upper part of the Qimugen Formation Micrantholithus and Braarudosphaera are commonly found right up to the top where most of the nannofloras suffer a sharp decrease. In the overlying Gaijitage Formation, calcareous nannofossils disappear completely. These events indicate that the southwestern Tarim Basin was a warm shallow continental shelf during the deposition of the Qimugen Formation. From the early Eocene, the environment changed conspicuously. Evaporation increased and sea level fell, which led to an acid climate.This climate mode continued within the youngest unit studied, the Gaijitage Formation, characterized by the deposition of thick evaporates. Consequently, most of the marine plankton, i.e. calcareous nannoplankton, became disappear, because of the significant climate shift.

关 键 词:CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY Paleocene-Eocene Thermal Maximum(PETM) TARIM Basin 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象