检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张卫东 李灵巧 胡锦泉[2] 冯艳春 尹利辉[3] 胡昌勤[3] 杨辉华[1,2] ZHANG Wei-Dong;LI Ling-Qiao;HU Jin-Quan;FENG Yan-Chun;YIN Li-Hui;HU Chang-Qin;YANG Hui-Hua(College of Computer and Information Security,Guilin University of Electronic Technology,Guilin 541004,China;College of Automation,Beijing University of Posts&Telecommunications,Beijing 100876,China;National Institutes for Food and Drug Control,Beijing 100050,China)
机构地区:[1]桂林电子科技大学计算机与信息安全学院,桂林541004 [2]北京邮电大学自动化学院,北京100876 [3]中国食品药品检定研究院,北京100050
出 处:《分析化学》2018年第9期1446-1454,共9页Chinese Journal of Analytical Chemistry
基 金:国家自然科学基金项目(Nos.21365008;61562013)资助~~
摘 要:提出一种基于堆栈稀疏自编码融合核极限学习机(Stacked sparse auto-encoders combine kernel extreme learning machine,SSAE-KELM)的近红外药品鉴别方法,通过引入核极限学习机代替SSAE的Softmax分类和BP微调阶段,减少了模型的训练步骤、训练参数以及训练时间,提高了深度学习网络的实际应用能力,核函数的引入提高了模型的分类能力。其中,SSAE用于初始化整个网络模型,并且从输入数据中学习到有用的特征,KELM用于实现分类任务。研究了SSAE-KELM模型对不同厂商生产的同一包装形式(铝塑或非铝塑)药品鉴别的预测能力、稳定性及训练时间,以实现药品的二分类和多分类的无损鉴别。同时,与ELM、SSAE、BP、SVM及随机隐退深度信念网络(Dropout-DBN)进行对比。结果表明,无论是二分类还是多分类,SSAE-KELM不仅具有更优的分类能力和稳定性、还减少了训练时间。因此,SSAE-KELM是一种有效的光谱分类建模工具。A method for drug discrimination with near infrared spectroscopy based on stacked sparse auto-encoders combined with kernel extreme learning machine(SSAE-KELM)was developed.By introducing the KELM instead of the SSAE’s Softmax classification and BP fine-tuning stage,the training steps,training parameters and training time of the SSAE were reduced,and the practical application of the deep learning network was improved,as well the classification ability of the model was improved by introduction of kernel function.Among which SSAE was used to initialize the entire network model and learn useful features from the input data and KELM was used to perform the classification.To identify binary-classification and multi-classification of drugs,the predictability,stability and training time of SSAE-KELM model for the same package(Aluminum-plastic or non-Aluminum-plastic)drug by different manufactures were investigated.At the same time,SSAE-KELM was compared with ELM,SSAE,SVM,BP and Dropout-DBN,and it was found that SSAE-KELM not only reduced the training time but had higher classification accuracy and stability in binary and multi-class classification.Therefore,SSAE-KELM is an effective spectral classification modeling tool.
关 键 词:稀疏自编码网络 核极限学习机 核函数 近红外光谱 药品鉴别
分 类 号:TQ460.72[医药卫生—药物分析学] O657.33[化学工程—制药化工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.250.2