基于压缩感知与自适应PCNN的医学图像融合  被引量:7

Medical Image Fusion Based on Compressive Sensing and Adaptive PCNN

在线阅读下载全文

作  者:高媛[1] 贾紫婷 秦品乐[1] 王丽芳[1] GAO Yuan;JIA Ziting;QIN Pinle;WANG Lifang(School of Computer and Control Engineering,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学计算机与控制工程学院,太原030051

出  处:《计算机工程》2018年第9期224-229,共6页Computer Engineering

基  金:山西省自然科学基金(2015011045)

摘  要:针对非下采样轮廓波变换(NSCT)域内基于脉冲耦合神经网络(PCNN)的图像融合方法融合效果较差、计算复杂度较高等问题,提出一种在非下采样剪切波变换(NSST)域内基于压缩感知(CS)和自适应PCNN的融合算法。源图像在NSST域内被分解成高低频,采用改进的PCNN融合低频子带系数,使用像素的平方差总和当作其激励因素,选取方向梯度总和作为其链接强度,对计算量较大的高频子带系数采用CS进行处理,经过NSST逆变换获得融合图像。实验结果表明,与NSCT融合算法、NSST与PCNN相结合的算法等相比,该算法能获得较好的信息熵、空间频率、边缘信息评价因子,且运行时间较短。Aiming at the problem of poor performance and high computational complexity in the image fusion algorithm which based on Pulse Coupled Neural Network(PCNN)in the Non-subsampled Contourlet Transform(NSCT)domain,an fusion algorithm based on Compressed Sensing(CS)and adaptive PCNN in NSST domain is proposed.The source image is decomposed into high and low frequencies in the NSST domain.An improved PCNN is used to fuse the low frequency subband coefficients.The sum of the squared differences of the pixels is used as the excitation.The sum of the direction gradients is used as the link strength,and the high frequency which need lots of calculations are processed using CS,and the fused image is obtained by inverse transform of NSST.Experimental results show that the algorithm performs better in information entropy,spatial frequency,edge information evaluation factor,and the running time is shorter compared with NSCT fusion algorithm,NSST combined with PCNN algorithm,and so on.

关 键 词:压缩感知 非下采样剪切波变换 脉冲耦合神经网络 图像融合 核磁共振成像 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象