检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付萍杰 杨可明[1] 王晓峰[1] 程龙[1] FU Ping-jie;YANG Ke-ming;WANG Xiao-feng;CHENG Long(College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083
出 处:《科学技术与工程》2018年第23期134-145,共12页Science Technology and Engineering
基 金:国家自然科学基金(41271436);中央高校基本科研业务费专项资金(2009QD02)资助
摘 要:利用经验模态分解(empirical mode decomposition,EMD)、自相关函数一阶导数比值差(ratio difference of autocorrelation function first-order derivative,_(RDA))和多重分形理论,结合玉米盆栽实验,研究了铜(Cu^(2+))、铅(Pb^(2+))离子不同胁迫梯度下玉米叶片光谱去噪、叶片重金属污染的Cu和Pb元素区分以及叶片中Cu、Pb元素含量预测方法。通过光谱数据的EMD去噪与重构处理,得到不同浓度Cu、Pb胁迫下玉米叶片重构光谱;利用光谱自相关函数一阶导数(autocorrelation function first derivative,AFFD)及其比值差(_(RDA)),建立了Cu^(2+)、Pb^(2+)不同胁迫梯度下玉米叶片重构光谱的_(RDA)变化量(Cu_(RDA)、Pb_(RDA))计算公式;依据_(RDA)变化量曲线中紫光、绿峰、红光、红边、近谷、近峰多个波谱特征区间的Cu_(RDA)和Pb_(RDA)计算值,可明显地区分出叶片的Cu、Pb污染类别;另外,根据实测的玉米叶片中叶绿素、Cu^(2+)、Pb^(2+)含量与叶片重构光谱的多重分形谱参量之间相关性,构建了叶片中Cu^(2+)、Pb^(2+)含量反演的线性回归预测模型,经验证模型精度较高。A de-noising method of corn leaf spectra,which had been stressed by heavy metals of different concentration gradients,was discussed.Also,the distinctions between the Cu and Pb element levels in the contaminated leaves,and a prediction method for the Cu 2+and Pb 2+content in the leaves based on empirical mode decomposition(EMD),ratio difference of autocorrelation function first-order derivative(RDA),and a multi-fractal theory combined with potted corn plant experiments,were utilized.An EMD de-noising,as well as reconstruction processes of the spectral data,were adopted to achieve the reconstructed spectra of the corn leaves stressed by different concentration gradients of Cu 2+and Pb 2+.Also,an autocorrelation function first-order derivative(AFFD),and the RDA of the spectra,were adopted to establish the RDA variation(Cu RDA and Pb RDA)calculation formula of the corn leaves which had reconstructed spectra stressed by different concentration gradients Cu 2+and Pb 2+.Then,in accordance with the Cu RDA and Pb RDA calculated values of the multiple spectral characteristic intervals(purple,green-peak,red,red-edge1,red-edge2,red-edge3,red-edge4,near-valley,near-peak B1,and near-peak B2)in the RDA variation curve,it was able to clearly distinguish the Cu and Pb pollution categories of the leaves.In addition,a linear regression forecasting model was established,along with a Newton interpolation polynomial forecasting model,for the content levels of the Cu 2+and Pb 2+inversion based on the correlation coefficient between the measured chlorophyll,Cu 2+,and Pb 2+content,and the multi-fractal spectrum parameters of the reconstructed spectra of the leaves.
关 键 词:光谱重构 经验模态分解 自相关函数一阶导数比值差 多重分形 重金属污染监测
分 类 号:X87[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49