检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴建伟 李艳玲 张辉 臧翰林 WU Jian-wei;LI Yan-ling;ZHANG Hui;ZANG Han-lin(Department of Information and Communication Engineering,Rocket Engineering University,Xi’an 710025,China)
机构地区:[1]火箭军工程大学信息与通信工程系,西安710025
出 处:《计算机科学》2018年第9期129-134,共6页Computer Science
基 金:国家自然科学基金项目(61201121)资助
摘 要:针对传统隐马尔科夫频谱预测中的时延长、预测准确度低的问题,提出了一种基于密度聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的HMM协作频谱预测算法。该算法采用DBSCAN算法将具有强相关性的频域信道聚为一簇,并以簇为单位对信道状态进行预测,通过减少预测次数来降低频谱预测时延;同时在时域利用多个次级用户协作预测的方法,通过融合各次级用户的初始预测结果来降低预测的不确定度。仿真实验表明,相比于传统的隐马尔科夫频谱预测算法,所提算法的频谱预测时延更短,准确度更高。Aiming at the problems of long time delay and low prediction accuracy in traditional hidden Markov spectrum prediction,this paper proposed an HMM cooperative spectrum prediction algorithm based on density-based spatial clustering of applications with noise(DBSCAN).BSCAN algorithm is used to cluster the frequency domain channels with strong correlation and predict the channel state in units of clusters,and the prediction delay is reduced by reducing the number of predicted times.At the same time,the method of multiple sub-users cooperative prediction is used in the time domain,and the forecast uncertainty is reduced by fusing the initial prediction results of each subordinate user.Simulation results show that the proposed algorithm has shorter spectral delay and higher accuracy compared with the traditional HMM-based local spectrum prediction algorithm and HMM-based packet fusion prediction algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49