检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晶[1] 韩颖 杨震[1] 苗辉 殷守强 Li Jing;Han Ying;Yang Zhen;Miao Hui;Yin Shouqiang(College of Geoscience and Surveying Engineering,China University of Mining and Technology,Beijing 100083,China)
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083
出 处:《农业工程学报》2018年第19期258-265,共8页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金资助项目(41501564)
摘 要:为识别植被覆盖区煤炭开采的生态影响边界,该文以兖州煤田为研究区域,应用温度植被干旱指数TVDI(temperature vegetation drought index)反演沉陷积水区外围的土壤湿度空间分布特征,利用MATLAB拟合TVDI变化趋势并依据其趋于稳定的渐近线,反解煤炭开采活动对矿区生态的影响边界,将其与采用MSCS(mining subsidence prediction system,MSCS)软件预计获得的下沉10 mm沉陷边界进行对比。结果表明:不同距离的TVDI中位数随距积水区边缘距离的变化表现为先增加后趋于平稳、呈指数变化特征;基于TVDI分析得到的煤炭开采的非积水影响范围,仅相当于沉陷积水面积的2.07倍,预计沉陷非积水面积与预计沉陷积水面积之比为4.63倍。通过模型拟合遥感指数随距离的变化特征,能够获得煤炭开采的影响边界;兖州煤田基于TVDI获取的煤炭开采影响面积,相对小于预计的开采沉陷面积。该研究可为确定煤炭开采对生态影响的边界提供参考。How to determine the ecological impact boundary of coal mining is one of the difficulties in the research field of land ecology in mining areas.For a long time,surface subsidence depth of 10 mm is generally used as the coal mining disturbance boundary not only to the developed land but also to the vegetation-covered land in the academic research and planning practice.Land reclamation is still bounded by the subsidence contour with the expected surface subsidence depth of 10 mm as the boundary.In fact,many scholars and other professionals have realized that 10 mm sinking is not adaptable as the boundary of mining influence on land ecology.Our research goal was to find a remote sensing method to identify mining impact boundary,which could be used to evaluate ecological accumulating effect of coal mining on vegetated area.Yanzhou coal field,a typical coal mine area with high groundwater level in the eastern China,was taken as the study area,where the coal mining has caused a lot of impounded water areas,and the spatial distribution characteristics of the temperature vegetation drought index(TVDI),which is linear with soil moisture,were analyzed.Then the influence boundary of mining subsidence on soil moisture was determined,and the difference between the influence boundary using TVDI spatial changing tendency and the expected surface subsidence of 10 mm was analyzed.Firstly,the authors calculated TVDI and found it was mainly concentrated in the range of 0.2-0.6,which meant soil moisture levels were mainly“normal”and“slight drought”.The areas belonging to“normal”level and“slight drought”accounted for 45.17%and 40.09%of the whole study area respectively.Secondly,the authors tried to obtain the influence boundary of soil moisture and analyzed the spatial distribution characteristics of TVDI from the edge of the impounded water area by mining subsidence.The impounded water areas i.e.A,B,C,D,F,G and H were taken as the research objects and the different distance ranges from the edge of the impounded water
关 键 词:遥感 生态 矿区 煤炭开采 沉陷积水区 温度植被干旱指数 土壤湿度 影响边界
分 类 号:F205[经济管理—国民经济] X171.4[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26