不同温度的双卡尔曼滤波算法电池组SOC估计  被引量:2

SOC Estimation of Battery Pack Based on Dual Kalman Filtering Algorithm at Different Temperatures

在线阅读下载全文

作  者:何耀 黄东明 刘新天 HE Yao;HUANG Dongming;LIU Xintian(Clean Energy Automotive Research Institute,Hefei University of Technology,Hefei 230009,China)

机构地区:[1]合肥工业大学新能源汽车工程研究院,合肥230009

出  处:《电源学报》2018年第5期112-118,共7页Journal of Power Supply

摘  要:动力锂电池组的荷电状态SOC(state of charge)是整个电池管理系统的重要参数,能直接反映电动汽车剩余可行驶里程,因此如何精确地估计电池组的SOC值是至关重要的。由于电池组各单体电池的不一致性,以及电动汽车在行驶过程中的复杂环境,所以在电池组内单体电池负载电压的最小值Vmin模型的基础上运用统计学的方法,对模型中的各参数进行有关温度因素的拟合,并通过模拟汽车的实际行驶环境,在不同温度下进行实验,从而得到改进的Vmin模型;结合双卡尔曼滤波算法,实现对整个电池组的SOC估计。仿真和实验结果表明该方法对电池组SOC的估计精度有优越性。The state of charge(SOC)of a lithium-ion power battery pack is an important parameter for the entire batzt-ery management system,which can directly reflect the remaining mileage that electric vehicles can run.As a result,it is essential to accurately estimate the SOC of the battery pack.Due to the nonuniformity of each cell in the battery pack,as well as the complex driving environment in which electric vehicles run,statistical methods are used in this paper to fit the model parameters into temperature-related factors on the basis of the Vmin model,which describes the minimum load voltage of a single cell in the battery pack.Through simulating the actual driving environment of electrical vehicles,an experiment is carried out at different temperatures,thus an improved Vmin model can be obtained.With the combination of dual Kalman filtering algorithm,the SOC estimation of the entire battery pack is realized.Simulation and experimental results show that the proposed method has advantage in improving the SOC estimation accuracy of the battery pack.

关 键 词:动力锂电池组 温度 荷电状态 双重卡尔曼滤波算法 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象