检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁新涛 曾侃[1] 贺明霞[1] DING Xin-Tao;ZENG Kan;HE Ming-Xia(Ocean Remote Sensing Institute,Ocean University of China,Qingdao 266003,China)
机构地区:[1]中国海洋大学海洋遥感研究所,山东青岛266003
出 处:《中国海洋大学学报(自然科学版)》2018年第10期132-142,共11页Periodical of Ocean University of China
基 金:中海油项目"海上溢油卫星自动识别和预警业务化系统研发"对本研究的资助
摘 要:目前应用于SAR图像海面溢油检测的分类器大多为单分类器,其检测率往往难以达到要求。本文引入AdaBoost算法和Bagging算法,内核采用决策树分类器(Decision tree,DT),形成两种分类器系统DT-A(AdaBoost-Decisiontree)和DT-B(Bagging-Decision-tree)。进而提出以AdaBoost分类器系统为内核的Bagging系统DT-AB(Bagging-AdaBoost-Decision-tree)。对1 448个Envisat/ASAR海面暗目标样本进行分类实验,DT-AB分类器系统与DT单分类器相比,溢油暗目标检测率从74%增至83%,错检率从26%降至16%。对4种分类器的检测率、泛化性能和稳定性能进行了比较测试,结果如下:(1)DT-A和DT-B的泛化性能明显优于DT,并且DT-A的泛化性能略优于DT-B;(2)DT-A和DT-B比DT的稳定性能提高一倍以上,DT-B的稳定性能略优于DT-A;(3)DT-AB的泛化性能和稳定性能均优于DT-A和DT-B。因此,DT-AB分类器系统用于卫星SAR图像海面溢油自动识别业务化系统具有应用前景。Most classifiers applied to oil detection by SAR images are kinds of single classifier so far,whose detection rates are often hard to meet the requirements.Two multiple classifier systems,DT-A(AdaBoost-Decision-tree)and DT-B(Bagging-Decision-tree),which are composed of decision tree(DT)classifiers with Adaboost and Bagging algorithms,respectively,are investigated for SAR oil detection.A Bagging classifier system DT-AB(Bagging-AdaBoost-Decision-tree)is further proposed which takes DT-A as its core classifier.Experiments with 1 448 dark targets extracted from Envisat/ASAR show that DT-AB significantly improves the classify performance comparing to DT.The detection rate increases from 74%to 83%and the false discovery rate decreases from 26%to 16%.Using the same sample set,many tests are implemented to compare the detection rate、generalization performance and stability of the four kinds of classifiers,DT,DT-A,DT-B and DT-AB.The results are summarized as follows:(1)for generalization performance,both DT-A and DT-B are much better than DT and DT-A is slightly better than DT-B;(2)for stability,both DT-A and DT-B are more than two times of DT-B and DT-B is slightly better than DT-A;(3)for the generalization performance and the stability,DT-AB is better than both DT-A and DT-B.Therefore,the multiple classifier system DT-AB has application potential in an operational automatic detection system for marine oil spill detection by SAR images.
关 键 词:合成孔径雷达(SAR) 海面溢油 ADABOOST BAGGING 决策树
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置] X87[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170