基于信噪比检验的双参数岭型Kalman滤波及其在BDS星地联合定轨中的应用  被引量:1

Double-Parameter Ridge-Type Kalman Filter Based on Signal-to-Noise Ratio Test and Its Application in BDS Combined Orbit Determination with Satellite-Ground Observations

在线阅读下载全文

作  者:李豪 顾勇为 郭淑妹 张国超 LI Hao;GU Yongwei;GUO Shumei;ZHANG Guochao(Department of Basic Course,Information Engineering University,Zhengzhou 450001,China)

机构地区:[1]信息工程大学基础部,郑州市科学大道62号450001

出  处:《大地测量与地球动力学》2018年第11期1143-1148,共6页Journal of Geodesy and Geodynamics

基  金:国家自然科学基金(41174005;41474009)~~

摘  要:将Kalman滤波病态性诊断与处理相结合,提出基于信噪比检验的双参数岭型Kalman滤波。在分析Kalman滤波的病态性以及岭型Kalman滤波的缺陷后,引入信噪比统计量度量每个待估参数受病态性影响的大小,将待估参数区分为涉扰参数和非涉参数,并利用两个岭参数对两类参数进行不同强度的修正,结合广义岭估计思想给出两个岭参数的选取方法。该算法在降低状态参数估计方差的同时尽量减少岭型Kalman滤波引入的偏差。利用STK仿真5颗GEO卫星+24颗MEO卫星+3颗IGSO卫星的北斗卫星星座并进行分布式自主定轨,结果表明提出的新算法能够有效改善病态性对Kalman滤波的不良影响,且相对于岭型Kalman滤波具有更高的定轨精度。In this paper,the ill-conditioning diagnosis and processing of Kalman filter are combined.First,the ill-conditioning of Kalman filter and the disadvantage of ridge-type Kalman filter are analyzed.Then,the signal-to-noise ratio(SNR)statistic is introduced to measure how much each parameter suffers from the ill-conditioning.Accordingly,all parameters are divided into two parts:involved parameters and non-involved parameters.Then,the two parts of parameters are corrected with two ridge parameters of different sizes.This method is named double-parameter ridge-type Kalman filter and can reduce the bias introduced in ridge-type Kalman filter,while reducing the variance of the state parameter estimation.Finally,in the simulation,the new algorithm is discussed in detail with a specific mixed navigation constellation of 5 GEO,3 IGSO 24 MEO.The results show that the new algorithm has higher orbit accuracy relative to ridge-type Kalman filter and the common Kalman filter.

关 键 词:KALMAN滤波 病态性 双参数岭估计 信噪比 BDS定轨 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象