轴向运动三参数黏弹性梁的分岔与混沌  被引量:1

Bifurcation and chaos of axially moving viscoelastic beam constituted by standard linear solid model

在线阅读下载全文

作  者:李怡 严巧赟[1] 丁虎[1] 陈立群[1,2] LI Yi;YAN Qiaoyun;DING Hu;CHEN Liqun(Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China;College of Sciences,Shanghai University,Shanghai 200444,China)

机构地区:[1]上海大学上海市应用数学和力学研究所,上海200072 [2]上海大学理学院,上海200444

出  处:《上海大学学报(自然科学版)》2018年第5期713-720,共8页Journal of Shanghai University:Natural Science Edition

基  金:国家自然科学基金重点资助项目(11232009);国家自然科学基金面上资助项目(11372171);国家自然科学基金优青资助项目(11422214)

摘  要:研究了轴向运动黏弹性梁在参数激励下的非线性动力学行为.采用牛顿第二定律推导了轴向运动梁的积分-偏微分控制方程,采用三参数模型本构关系描述了运动梁的黏性特征.运用四阶Galerkin截断方法将控制方程离散为常微分方程组,并采用四阶Runge-Kutta法对常微分方程组求解,得到了运动梁上各点的时间响应历程,进而分析了运动梁的分岔与混沌特征.通过时间历程图以及频谱分析图、相图、庞加莱映射图,呈现了系统的混沌现象.着重考察了三参数黏弹性对系统非线性动力学行为的影响.结果发现,轴向运动梁的非线性振动对黏弹性各个参数都很敏感.The nonlinear dynamic behavior of an axially moving viscoelastic beam under parametric excitation is investigated.A standard linear solid model is used in the constitutive relation.Newton’s second law is applied to derive a nonlinear integral-partialdifferential governing equation of the beam.The fourth-order Galerkin truncation method is applied to truncate the governing equation into a set of ordinary differential equations solved with the fourth-order Runge-Kutta method.Based on the diagrams of time history,phase,Poincar′e map and frequency analysis,the dynamical behavior is identified.The investigation is focused on the effects of the standard linear solid model’s viscoelasticity on the nonlinear dynamic behavior.Numerical simulations show that vibration of an axially accelerating viscoelastic beam is sensitive to all parameters of the standard linear solid model.

关 键 词:轴向运动梁 三参数模型 Galerkin截断 分岔 混沌 

分 类 号:O322[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象