空间自回归模型的主成分估计  被引量:1

在线阅读下载全文

作  者:赵宇[1] 

机构地区:[1]中央民族大学理学院,北京100081

出  处:《统计与管理》2018年第7期53-56,共4页Statistics and Management

摘  要:空间自回归模型是空间计量经济学中处理空间相关性时常用的一类回归模型,本文主要考虑到自变量存在多重共线性时,空间自回归模型的参数应该如何估计。在主成分分析以及极大似然估计方法的基础之上,建立了一类针对模型未知参数的有偏估计,从而减少多重共线性对于模型求解的影响。本文引入数值模拟部分,说明了主成分估计方法对于处理多重共线性问题的有效性,同时引入波士顿房价数据实例,进一步验证了当多重共线性出现时,有偏估计结果较之极大似然估计更为合理。

关 键 词:空间自回归模型 多重共线性 极大似然估计 主成分估计 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象