检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张新明[1,2] 王霞 康强 程金凤[1] ZHANG Xin-ming;WANG Xia;KANG Qiang;CHENG Jin-feng(College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China;Engineering Technology Research Center for Computing Intelligence&Data Mining of Henan Province,Xinxiang,Henan 453007,China)
机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]河南省高校计算智能与数据挖掘工程技术研究中心,河南新乡453007
出 处:《电子学报》2018年第10期2430-2442,共13页Acta Electronica Sinica
基 金:河南省重点科技攻关项目(No.132102110209);河南省高等学校重点科研项目(No.19A520026)
摘 要:灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.Grey Wolf Optimizer(GWO)and Artificial Bee Colony(ABC)are two popular and efficient intelligent optimization algorithms.GWO has some features such as strong exploitation but weak exploration.ABC has other ones such as strong global search ability but slow convergence.In order to realize their complementary advantages,a hybrid GWO with ABC(HGWOA)was proposed.Firstly,a static greedy algorithm was used to replace the dynamic greedy algorithm in the employed bee phase to enhance the exploration ability,and a new search method was created to make up for the lost convergence quality.Secondly,the scout bee phase which affects the convergence speed was removed,and an opposition learning strategy was embedded into the employed bee phase to keep the algorithm from falling into the local optima.Finally,in order to balance the exploration ability of the employed bee phase,GWO was added to the onlooker bee phase to strengthen the exploitation and improve the optimization efficiency.Experimental results on many function and clustering optimization problems show that compared with state-of-the-art methods,HGWOA has better optimization performance and stronger universality and it can solve clustering optimization problems more efficiently.
关 键 词:智能优化算法 灰狼优化算法 人工蜂群算法 混合优化算法 聚类优化
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.98.193