基于改进CV模型的图像分割算法  被引量:4

Image segmentation algorithm based on improved CV model

在线阅读下载全文

作  者:鲁圆圆 强静仁 汪朝[2] LU Yuanyuan;QIANG Jingren;WANG Zhao(School of Information and Communication,Wuhan College,Wuhan 430212,China;College of Materials and Mineral Resources,Xi’an University of Architecture and Technology,Xi’an 710055,China)

机构地区:[1]武汉学院信息及传播学院,湖北武汉430212 [2]西安建筑科技大学材料与矿资学院,陕西西安710055

出  处:《现代电子技术》2018年第21期71-75,共5页Modern Electronics Technique

基  金:国家自然科学基金青年科学基金(51404182)~~

摘  要:传统CV模型在目标图像存在噪声干扰及图像背景较为复杂的情况下,图像分割效果较差,极易造成误分割。为了提高基于CV模型图像分割的分割效果及分割效率,提出一种基于改进CV模型的图像分割算法。首先,根据曲线演化理论对CV模型的曲线驱动力进行简化,以此提高模型的分割效率;然后,利用L1范数构造CV模型的能量泛函,同时引入中值替代传统CV模型中的曲线拟合中心,在简化数据计算的同时,提高模型对噪声的鲁棒性;最后,将该曲线驱动力与L1范数能量泛函进行融合,以此构造最终的改进CV模型的能量泛函。将所提模型与传统CV模型、LIF模型、局部二值模型以及偏置场修正水平集模型的实验结果进行对比,结果表明所提模型分割效果最优,且分割速率最高。The traditional CV(Chan-Vese)model has poor image segmentation effect and may result in segmentation mistake in the cases of noise interference and complex image background existing in the target image.An image segmentation algorithm based on improved CV model is proposed to improve the segmentation effect and segmentation efficiency of the model.The curve driving force of CV model is simplified according to the curve evolution theory,so as to improve the segmentation efficiency of the model.The L1 norm is used to construct the energy functional of CV model,and the median value is introduced into it to replace the curve fitting center of traditional CV model,which can simplify the data calculation,and improve the model robustness against noise.The L1 norm energy functional is fused with the curve driving force to construct the energy functional of the improved CV model.In comparison with the experimental results of the traditional CV model,LIF model,local binary model and bias field correction level set model,the proposed model has the best segmentation effect and fastest segmentation speed.

关 键 词:图像分割 改进型CV模型 曲线驱动力 L1范数能量泛函 分割效率 数据计算 

分 类 号:TN911.73-34[电子电信—通信与信息系统] TP301.6[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象