机构地区:[1]State Key Laboratory of Water Resources and Hydropower Engineering Science,Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering(Ministry of Education),Wuhan University,8 Donghu South Road,Wuhan 430072,China [2]Department of Civil and Environmental Engineering,National University of Singapore,Blk E1A,#07-03,1 Engineering Drive 2,Singapore 117576,Singapore [3]Institute for Risk and Uncertainty,University of Liverpool,Harrison Hughes Building,Brownlow Hill,Liverpool,L69 3GH,United Kingdom
出 处:《Geoscience Frontiers》2018年第6期1665-1677,共13页地学前缘(英文版)
基 金:supported by the National Key Research and Development Program of China(Project No.2016YFC0800208);the National Natural Science Foundation of China(Project Nos.51329901,51528901,51579190,51779189)
摘 要:Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ and/or laboratory tests. Such direct measurements are, however, costly and timeconsuming due to high standards for equipment and procedural control and limits in testing apparatus. As a result, only a limited number of data points(e.g., volumetric water content vs. matric suction)on SWCC at some values of matric suction are obtained in practice. How to use a limited number of data points to estimate the site-specific SWCC and to quantify the uncertainty(or degrees-of-belief) in the estimated SWCC remains a challenging task. This paper proposes a Bayesian approach to determine a site-specific SWCC based on a limited number of test data and prior knowledge(e.g., engineering experience and judgment). The proposed Bayesian approach quantifies the degrees-of-belief on the estimated SWCC according to site-specific test data and prior knowledge, and simultaneously selects a suitable SWCC model from a number of candidates based on the probability logic. To address computational issues involved in Bayesian analyses, Markov Chain Monte Carlo Simulation(MCMCS), specifically Metropolis-Hastings(M-H) algorithm, is used to solve the posterior distribution of SWCC model parameters, and Gaussian copula is applied to evaluating model evidence based on MCMCS samples for selecting the most probable SWCC model from a pool of candidates. This removes one key limitation of the M-H algorithm, making it feasible in Bayesian model selection problems. The proposed approach is illustrated using real data in Unsaturated Soil Database(UNSODA) developed by U.S. Department of Agriculture. It is shown that the proposed approach properly estimates the SWCC based on a limited number of site-specific test data and prior knowledge, and reflects the degrees-of-belief on the estimated SWCC in a rational and quantitative manner.Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ and/or laboratory tests. Such direct measurements are, however, costly and timeconsuming due to high standards for equipment and procedural control and limits in testing apparatus. As a result, only a limited number of data points(e.g., volumetric water content vs. matric suction)on SWCC at some values of matric suction are obtained in practice. How to use a limited number of data points to estimate the site-specific SWCC and to quantify the uncertainty(or degrees-of-belief) in the estimated SWCC remains a challenging task. This paper proposes a Bayesian approach to determine a site-specific SWCC based on a limited number of test data and prior knowledge(e.g., engineering experience and judgment). The proposed Bayesian approach quantifies the degrees-of-belief on the estimated SWCC according to site-specific test data and prior knowledge, and simultaneously selects a suitable SWCC model from a number of candidates based on the probability logic. To address computational issues involved in Bayesian analyses, Markov Chain Monte Carlo Simulation(MCMCS), specifically Metropolis-Hastings(M-H) algorithm, is used to solve the posterior distribution of SWCC model parameters, and Gaussian copula is applied to evaluating model evidence based on MCMCS samples for selecting the most probable SWCC model from a pool of candidates. This removes one key limitation of the M-H algorithm, making it feasible in Bayesian model selection problems. The proposed approach is illustrated using real data in Unsaturated Soil Database(UNSODA) developed by U.S. Department of Agriculture. It is shown that the proposed approach properly estimates the SWCC based on a limited number of site-specific test data and prior knowledge, and reflects the degrees-of-belief on the estimated SWCC in a rational and quantitative manner.
关 键 词:Soilewater characteristic CURVE BAYESIAN approach UNSATURATED SOILS Degrees-of-belief UNSODA
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...