机构地区:[1]College of Food Science and Engineering,Ocean University of China,Qingdao 266003,China [2]Marine Biomedical Research Institute of Qingdao,Qingdao 266073,China
出 处:《Journal of Ocean University of China》2018年第6期1423-1431,共9页中国海洋大学学报(英文版)
基 金:supported by grants from the China Postdoctoral Science Foundation to Dr.Chuyi Liu(No.2016M592251)
摘 要:In this study, the Alaska pollock protein isolate(APPI) was hydrolyzed by Neutrase for 20, 40, 80, 120, 160, 200, and 240 min. Hydrolysates with different molecular weights were produced and they were named as H1–H7. Furthermore, the effects of hydrolysis on the average molecular weights, functional properties(solubility, oil-holding capacities, foaming activities, and emulsifying properties), and antioxidant activities(1, 1-diphenyl-2-picrylhydrazyl, superoxide, and hydroxyl free radical-scavenging activities) were determined. It was found that when the degree of hydrolysis(DH) increased, the average molecular weights of the hydrolysates decreased significantly. The functional properties of APPI were also significantly improved. The hydrolysates of APPI exhibited better solubility, emulsifying activities, and foaming activities. Hydrolysates with low molecular weights(<1 kDa) had better solubility, oil-holding capacities, and emulsifying activities, while hydrolysates with higher molecular weights(>1 kDa) had better foaming activities. In addition, the hydrolysates exhibited excellent antioxidant properties, while the inhibition values of 1, 1-diphenyl-2-picryl hydroxyl(DPPH), superoxide, and hydroxyl free radical-scavenging activities, were 85.22%, 53.56%, and 75.00% respectively, when the concentration of the hydrolysates was 5.0 mg mL^(-1). The lower the average molecular weight was, the higher was the antioxidant activity. These results indicated that hydrolysis with Neutrase is an effective method for improving the functional and antioxidant properties of APPI. The hydrolysates of APPI displayed great potentials to be used as natural antioxidants in protein-rich aqueous foods such as nutrient supplements and sports beverages.In this study, the Alaska pollock protein isolate(APPI) was hydrolyzed by Neutrase for 20, 40, 80, 120, 160, 200, and 240 min. Hydrolysates with different molecular weights were produced and they were named as H1–H7. Furthermore, the effects of hydrolysis on the average molecular weights, functional properties(solubility, oil-holding capacities, foaming activities, and emulsifying properties), and antioxidant activities(1, 1-diphenyl-2-picrylhydrazyl, superoxide, and hydroxyl free radical-scavenging activities) were determined. It was found that when the degree of hydrolysis(DH) increased, the average molecular weights of the hydrolysates decreased significantly. The functional properties of APPI were also significantly improved. The hydrolysates of APPI exhibited better solubility, emulsifying activities, and foaming activities. Hydrolysates with low molecular weights(<1 kDa) had better solubility, oil-holding capacities, and emulsifying activities, while hydrolysates with higher molecular weights(>1 kDa) had better foaming activities. In addition, the hydrolysates exhibited excellent antioxidant properties, while the inhibition values of 1, 1-diphenyl-2-picryl hydroxyl(DPPH), superoxide, and hydroxyl free radical-scavenging activities, were 85.22%, 53.56%, and 75.00% respectively, when the concentration of the hydrolysates was 5.0 mg mL^(-1). The lower the average molecular weight was, the higher was the antioxidant activity. These results indicated that hydrolysis with Neutrase is an effective method for improving the functional and antioxidant properties of APPI. The hydrolysates of APPI displayed great potentials to be used as natural antioxidants in protein-rich aqueous foods such as nutrient supplements and sports beverages.
关 键 词:Alaska POLLOCK protein isolate(APPI) SOLUBILITY ENZYMATIC HYDROLYSIS functional properties
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...