检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李坤 Li Kun(School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China)
机构地区:[1]中南财经政法大学统计与数学学院,湖北武汉430073
出 处:《江苏科技信息》2018年第32期40-43,共4页Jiangsu Science and Technology Information
摘 要:文章以互联网金融机构客户信贷数据为基础,使用7种不同的数据挖掘方法建立个人信用评估模型,从预测准确率、模型外推性、第二类错误率、预期错误分类成本4个方面评价模型的综合信用评估能力。评价结果表明,使用分类树和K近邻分类算法建立的个人信用评估模型的综合信用评估能力最高;同时发现使用线性和非线性方法建立的模型各有特点,线性分类模型能够对违约客户进行有效识别,而非线性分类模型的预测精度较高。Based on the customer credit data of internet financial institutions,this paper uses seven different data mining methods to establish personal credit evaluation model,and evaluates the comprehensive credit evaluation ability of the model from four aspects:prediction accuracy,model extrapolation,the rate of typeⅡerror,expected cost of error classification.The evaluation results show that the comprehensive credit evaluation ability of the personal credit evaluation model based on classification tree and K-nearest neighbor classification algorithm is the highest.At the same time,it is found that the models based on linear and non-linear methods have their own characteristics.Linear classification model can effectively identify defaulted customers,while nonlinear classification model has higher prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200