机构地区:[1]Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences [2]Key Laboratory of Salt Lake Geology and Environment of Qinghai Province [3]University of Chinese Academy of Sciences [4]Tianjin Center, China Geological Survey
出 处:《Geoscience Frontiers》2019年第1期253-262,共10页地学前缘(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Grant Nos. 41872093, 41502096); Foundation of Qinghai Science & Technology Department (2016-ZJ-715); One-Thousand InnovativeTalent Project of Qinghai Province (Grant to QS Fan)
摘 要:In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.
关 键 词:B isotope compositions Brine Chemical concentrations Qarhan salt lake Western China Salinity of paleolake water
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...