一类特殊六次规划问题的全局最优充分条件  

Global Sufficient Optimality Conditions for a Special Class of Sixth Programming Problems

在线阅读下载全文

作  者:李欢 柳丽娜 LI Huan;LIU Lina(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)

机构地区:[1]重庆师范大学数学科学学院,重庆401331

出  处:《湖北民族学院学报(自然科学版)》2018年第4期415-419,共5页Journal of Hubei Minzu University(Natural Science Edition)

摘  要:全局最优性条件是判断一个解是否为全局最优解的基本条件,在此前,已经有文献提出了非凸二次规划问题和非凸三次次规划问题的充分全局最优性条件,但是均未对六次规划问题进行研究.因此,本文利用L-次梯度方法,得到了带有箱子约束的非凸六次规划问题的全局最优充分性条件.此外,通过构造一类特殊的对角矩阵,以方便验证所提出问题的全局充分性条件.The global optimality condition is the basic condition for judging whether a solution is a global optimal solution.Previously,some literature have proposed sufficient global optimality conditions for non-convex quadratic programming problem and non-convex cubic programming problem.The non-convex six-order programming problem were not studied.Therefore,the global optimal sufficiency condition of the non-convex six-order programming problem with box constraints is obtained by the L-subgradient method.In addition,a special diagonal matrix is constructed,which is used to provide a convenient method for justifying the proposed sufficient conditions.

关 键 词:L-次梯度 全局最优性条件 多项式规划 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象