多重水印快速加密技术在图像深度传感器中的应用  被引量:1

Application of Multi Watermark Fast Encryption Technology in Image Depth Transduce

在线阅读下载全文

作  者:陶锐[1] 孙彦景[1] 刘卫东[1] TAO Rui;SUN Yanjing;LIU Weidong(China University of Mining Technology,Jiangsu Province Laboratory ofElectrical and Automation Engineering for Coal Mining,Xuzhou Jiangsu 210046,China)

机构地区:[1]中国矿业大学江苏省煤矿电气与自动化工程实验室,江苏徐州210046

出  处:《传感技术学报》2018年第12期1935-1940,共6页Chinese Journal of Sensors and Actuators

摘  要:针对票据中的数字、签名等关键内容容易被篡改的问题,研究了金融电子票据中高效率的快速多重数字水印加密方法。首先,利用卷积神经网络构建图像深度传感器来识别票据中的关键信息区域,以减少水印加密的运算数据量,提高金融票据自动处理效率。针对传统的网络结构易导致过拟合的问题,提出了利用票据图及其差分特征,构建适合CNN网络的多通道图像输入特征,能充分挖掘图像内在联系;进一步改进了传统的CNN网络结构,把所有卷积层的输出连接为一层,构成包含各层信息的融合特征,输入网络的全连接层进行分类识别。实验结果表明,改进后的CNN识别算法,相较传动CNN、DNN等算法,其性能均有明显提升,能够更加高效的进行多个关键区域的内容识别,从而高效的进行多重数字水印的加密,提高金融票据处理的安全性和运算效率。We study the efficient watermark encryption methods for electronic bills,in order to better protect the key areas in the content.First,the convolutional neural network(CNN)is used to identify key areas in electronic bills,the processed data amount is small.To solve the overfitting problemof convolutional CNN,we first propose the use of image data and their differential features to construct multi-channel image input features suitable for CNN networks,and fully exploit the intrinsic characteristics of the electronic bills.Then,the traditional CNN network structure is improved and the outputs of all convolutional layers are connected as One layer constitutes a fused feature that contains information at each layer,and is input into the network’s fully connected layer for classification and identification.Experiments indicate that the improved CNN recognition algorithm has significantly improved recognition rate compared with CNN and DNN algorithms and leads to more efficient encryption on the key areas.

关 键 词:传感器信号处理 深度传感器 卷积神经网络 电子票据加密 数字水印 

分 类 号:V249.32.8[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象