土工参数概率特性的贝叶斯优化估计  被引量:3

Bayesian Optimization Estimation for Probability Characteristic of Geotechnical Parameters

在线阅读下载全文

作  者:徐志军[1] 张健 肖昭然[1] 刘军 XU Zhijun;ZHANG Jian;XIAO Zhaoran;LIU Jun(School of Civil Engineering and Architecture,Henan University of Technology,Zhengzhou 450001,China)

机构地区:[1]河南工业大学土木建筑学院,河南郑州450001

出  处:《人民黄河》2019年第1期97-100,共4页Yellow River

基  金:国家自然科学基金资助项目(51608177)

摘  要:足量精确的土工参数测试数据是计算其均值和标准方差的关键,在工程实际中,受到各种不确定性因素的影响,获得足量精确的数据较为困难。基于数理统计方法,建立土工参数数据优化处理模型,将数据优化处理为"好数据"和"一般数据",剔除离散性较大的数据;利用随机加权法将数据量较小的"好数据"和"一般数据"进行加权处理。最后利用贝叶斯方法对土工参数概率分布的均值和标准方差进行优化估计。通过算例分析表明:贝叶斯优化后的标准方差大大降低;贝叶斯优化后的概率分布均值与"好数据"的均值相差很小,但与一般数据的均值和所有数据的均值相差较大。证明了贝叶斯优化后的均值和标准方差更接近工程实际,由此估计出的工程安全性更加科学合理。The key procedure to compute the mean and standard variance of geotechnical testing data is sufficient and exact data. However,due to various uncertainties in engineering practice,it is more difficult to obtain sufficient and exact data. This paper used the mathematical statistical method to set up the optimization model of geotechnical parameters,which could classify the geotechnical parameters into"good data"and"general data"and get rid of the singular data. Then the smaller sample between the"good data"and"general data"was advanced by using random weighing method. Finally,Bayesian method was introduced to optimize the mean and standard variance of geotechnical data.The results through case study show that the standard variance of optimized data is greatly decreased. The difference between the mean of"optimized probability distribution"and"good data"is pretty small. The mean of"general data"and"all data"is greater than that of"optimized probability distribution"and"good data",which verifies the presented method can scientifically and reasonably estimate the safety of engineering.

关 键 词:土工参数 概率特性 贝叶斯优化 均值 标准方差 

分 类 号:TU413[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象