一种实时电能质量扰动识别分类方法  被引量:1

Real-time power quality disturbance recognition method

在线阅读下载全文

作  者:张立鹏 郑岩 秦刚[2] 董继 孙伟 ZHANG Lipeng;ZHENG Yan;QIN Gang;DONG Ji;SUN Wei(Langfang Power Supply Company,State Grid Jibei Electric Power Company Limited,Langfang,Hebei 065000,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Baoding,Hebei 071003,China;Baoding Power Supply Company,Hebei Electric Power Corporation,Baoding,Hebei 071000,China)

机构地区:[1]国网冀北电力有限公司廊坊供电公司,河北廊坊065000 [2]华北电力大学新能源电力系统国家重点实验室,河北保定071003 [3]国网河北省电力公司保定市供电公司,河北保定071000

出  处:《河北工业科技》2019年第1期42-46,共5页Hebei Journal of Industrial Science and Technology

基  金:国网河北省科技攻关项目(KJ2015014)

摘  要:针对电能质量扰动数据大、识别算法繁琐,难以实现在线实时识别等问题,提出了基于深度卷积神经网络AlexNet的电能质量扰动识别数法,首先将各类电能质量扰动转化为图片格式,然后输入到AlexNet算法,通过学习、调整电能质量扰动信号的特征参数,迭代收敛,最后将实时的电能质量扰动通过训练好的AlexNet,直接实现扰动识别分类。实时仿真结果表明,所提出的方法能精确识别包括3种复合扰动在内的17种电能质量扰动问题,只需要对电能质量扰动信号进行学习,即可以直接对电能质量扰动信号进行识别与分类,识别算法简单且处理的时间短,达到了实时性的目的。In view of such problems as the large amount of data of disturbance signals in power system,the numerous links of current identification algorithms,and the lack of real-time power quality disturbance identification,AlexNet classification algorithm is used in deep convolution neural network for power quality disturbance identification.Firstly,the power quality disturbances are converted into picture format and input into AlexNet algorithm.By learning and adjusting the characteristic parameters of the power quality disturbance signal,iterative convergence is realized.Finally,the real-time power quality disturbances are recognized and classified directly by AlexNet.Real-time simulation shows that this method can accurately identify 17 kinds of power quality disturbances including three kinds of compound disturbances.The method can recognize and classify power quality disturbance signals directly after learning the power quality disturbance signals.The recognition algorithm is simple and the processing time is short,which achieves the purpose of real-time.

关 键 词:电力系统 深度卷积神经网络 AlexNet 复合扰动 电能质量 

分 类 号:TM761[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象