检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹柏贤[1] 苗军 逯燕玲[1] ZOU Baixian;MIAO Jun;LU Yanling(College of Applied Arts and Science,Beijing Union University,Beijing 100191,China;Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,China)
机构地区:[1]北京联合大学应用文理学院,北京100191 [2]北京信息科技大学计算机学院网络文化与数字传播北京市重点实验室,北京100101
出 处:《计算机工程与应用》2019年第3期23-29,39,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.41671165;No.61650201);北京市自然科学基金(No.4162058);北京未来芯片技术高精尖创新中心科研基金(No.KYJJ2018004);北京市属高校高水平教师队伍建设支持计划高水平创新团队建设计划项目(No.IDHT20180515)
摘 要:光纤安防监测系统信号的特征提取与识别方法是当前的研究热点。光纤振动信号的随机性、非平稳性,以及各种信号的相似性,导致信号的识别容易产生误报现象。识别入侵事件类型的关键是信号的特征提取和高效的识别方法。对光纤振动信号的各种特征提取方法和识别方法进行分析和比较,把特征提取方法分为基于小波分解的特征提取法、基于其他分解模型的特征提取方法和基于波形统计参数的特征提取法;把对光纤振动信号的识别方法分为经验阈值识别方法、支持向量机识别方法和神经网络识别方法,最后对特征提取方法和识别方法进行总结和展望。The feature extraction and recognition method of optical fiber security monitoring system is the current research hotspot.The randomness,nonstationarity and similarity of various incident signals of optical fiber vibration signals cause false identification.The key to identify the types of intrusion event is signal feature extraction and efficient recognition.The characteristics extraction methods and recognition methods of optical fiber vibration signals are analyzed and compared.Feature extraction methods are divided into feature extraction based on wavelet decomposition,feature extraction based on other decomposition models and feature extraction based on waveform statistical parameters.The identification methods of optical fiber vibration signals are divided into empirical threshold recognition,support vector machine recognition and neural network recognition.Finally,the feature extraction methods and recognition methods are summarized and prospected.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222