检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周海英[1] 李松玥 ZHOU Hai-ying;LI Song-yue(School of Computer Science and Technology,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学计算机科学与技术学院,山西太原030051
出 处:《计算机工程与设计》2019年第2期550-555,共6页Computer Engineering and Design
基 金:山西省自然科学基金项目(2013011017-6)
摘 要:常规的时空上下文算法在描述目标外观时使用简单的灰度特征,而灰度特征不能很好地描述目标外观,为此提出一种基于颜色特征和尺度自适应的时空上下文算法。通过融合灰度特征和颜色特征描述目标,构建目标的时空上下文模型并计算置信图,以置信图中的最大值处作为估计的目标位置并通过尺度滤波器进行尺度更新。实验选取CVPR2013中20段视频进行测试分析,与近年提出的7个优秀的跟踪器进行对比与分析,实验结果表明,目标在遮挡、旋转、快速运动及光照变化等复杂场景中,该算法能够成功跟踪目标,跟踪性能优于其它算法。The conventional spatio-temporal context algorithm uses simple grayscale features to describe the appearance of the target,and the grayscale features do not describe the target appearance well.A spatio-temporal context algorithm based on color features and scale adaptation was proposed.By merging the gray features and color features,the target was described,and a spatio-temporal context model was constructed.The confidence map was calculated.The maximum value of the confidence map was used as the estimated target position and the scale was updated using the scale filter.20 videos in CVPR2013 were selected for testing and analyzing,experimental results show that compared with 7 excellent trackers proposed in recent years,the proposed algorithm can successfully track the target in complex scenes such as occlusion,rotation,rapid movement and illumination change,and the tracking performance is superior to other algorithms.
关 键 词:目标跟踪 时空上下文算法 相关滤波器 颜色特征 尺度估计
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117