检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾凌杉 JIA Lingshan(Hebei University of Environmental Engineering, Qinhuangdao 066100, China)
出 处:《电镀与环保》2019年第1期21-23,共3页Electroplating & Pollution Control
基 金:秦皇岛市重点研发计划科技支撑项目(201703A024)
摘 要:采用复合电镀工艺制备了Cu-Al_2O_3复合镀层。用X射线衍射仪表征了镀层的微观结构,计算出平均晶粒尺寸,并用维氏硬度计测量了镀层的显微硬度。将电流密度和镀液中Al_2O_3微粒的质量浓度作为输入变量,并将镀层的平均晶粒尺寸和显微硬度作为输出结果,建立了RBF神经网络。仿真结果表明:RBF神经网络具有较强的预测能力,其预测结果与实测结果较为接近,平均误差约为0.15%,为Cu-Al_2O_3复合电镀工艺优化提供了参考。Cu-Al2O3 composite coatings were prepared by composite electroplating technology.The microstructure of the coatings was characterized by X-ray diffractometer,and the average grain size was calculated,the microhardness of the coatings was also measured by vickers hardness tester.RBF neural network was established by using current density and mass concentration of Al2O3 particles in plating bath as the input variable,and the average grain size and microhardness of the coatings as output results.The simulation results showed that RBF neural network has preferable predictive ability,the predicted value and experimental value were in good agreement,and the average error was about 0.15%.It provides references for the optimization of Cu-Al2O3 composite electroplating technology.
关 键 词:RBF神经网络 CU-AL2O3 复合电镀工艺 显微硬度 预测结果 实测结果
分 类 号:TQ153[化学工程—电化学工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68