基于FP-Growth改进算法的轮胎质量数据分析  被引量:9

Data Analysis of Tyre Quality Based on Improved FP-Growth Algorithm

在线阅读下载全文

作  者:李敏波[1,2] 丁铎 易泳 LI Minbo;DING Duo;YI Yong(Software School,Fudan University,Shanghai,200433;Shanghai Key Laboratory of Data Science,Fudan University,Shanghai,200433)

机构地区:[1]复旦大学软件学院,上海200433 [2]复旦大学上海市数据科学重点实验室,上海200433

出  处:《中国机械工程》2019年第2期244-251,共8页China Mechanical Engineering

基  金:国家自然科学基金资助项目(61671157);上海科技创新行动计划资助项目(18511107800);山东省重大科技创新工程资助项目(2018CXGC0604)

摘  要:针对轮胎制造过程质量异常的问题分析,介绍了轮胎质量数据获取、有效整合与数据分析流程,基于Hive数据仓库构建了生产数据与产品检测数据相关联的结构化数据集。针对现有频繁模式增长(FP-Growth)算法存在FP树建树性能较低与大数据处理效率低的问题,提出了一种改进的FPGrowth算法,在原有的频繁项头表基础上新增一个tail属性,加速FP树构建。实验结果表明,改进后的FP-Growth并行算法能够有效提高轮胎质量异常数据的关联分析效率,能够找出影响轮胎质量的生产制造重要因素,并且适用于大数据量的数据挖掘。According to the problem analyses of abnormal quality in tyre manufacturing processes,tyre quality data acquisition,effective integration and data analysis processes were discussed.The structured data sets associated with production data and product inspection data were constructed based on Hive data warehouse.For the existing frequent pattern-growth(FP-Growth)algorithm,the performance of FP-tree was low,an improved FP-growth algorithm was proposed.A new tail attribute was added to the existing header table of frequent item and accelerate the construction of FP-tree.The experiments show that the improved FP-growth algorithm may effectively improve the correlation analysis efficiency of tyre quality abnormal data.The improved FP-growth algorithm is able to identify the factors that affect the quality of tire productions,and it is also suitable for large data mining.

关 键 词:工业大数据 质量分析 FP-GROWTH算法 数据挖掘 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象