Traction rheological properties of simulative soil for deep-sea sediment  被引量:3

Traction rheological properties of simulative soil for deep-sea sediment

在线阅读下载全文

作  者:QI Cailing RAO Qiuhua LIU Qi MA Wenbo 

机构地区:[1]College of Civil Engineering and Mechanics, Xiangtan University [2]Hunan Key Laboratory of Geomechanics and Engineering Safety, Xiangtan University [3]School of Civil Engineering, Central South University

出  处:《Journal of Oceanology and Limnology》2019年第1期62-71,共10页海洋湖沼学报(英文)

基  金:Supported by the National Natural Science Foundation of China(Nos.11502226,51274251,51434002);the Key Research and Development Plan of Hunan Province(No.2017WK2032);the Research Foundation of Education Bureau of Hunan Province,China(Nos.15C1317,16C1542);the Hunan Provincial Innovation Foundation For Postgraduate(No.CX2017B342)

摘  要:The traction capacity of the mining machine is greatly in?uenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Paci?c C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by ?tting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining effciency.The traction capacity of the mining machine is greatly influenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Paci?c C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by ?tting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining effciency.

关 键 词:simulative SOIL TRACTION RHEOLOGICAL properties CONSTITUTIVE model RHEOLOGICAL parameters ground contact length of TRACK WALKING velocity 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象