基于四阶累积量张量联合对角化的多数据集联合盲源分离  被引量:7

Joint Blind Source Separation Based on Joint Diagonalization of Fourth-order Cumulant Tensors

在线阅读下载全文

作  者:龚晓峰 毛蕾 林秋华[1] 徐友根[2] 刘志文[2] GONG Xiaofeng;MAO Lei;LIN Qiuhua;XU Yougen;LIU Zhiwen(School of Information and Communication Engineering, Dalian University ofTechnology, Dalian 116024, China;School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

机构地区:[1]大连理工大学信息与通信工程学院,大连116024 [2]北京理工大学信息与电子学院,北京100081

出  处:《电子与信息学报》2019年第3期509-515,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金面上项目(61671106;61871067);国家自然科学基金重点项目(61331019)~~

摘  要:该文提出一种基于四阶累积量张量联合对角化的联合盲源分离(J-BSS)算法。首先通过计算4阶互累积量将多数据集信号的J-BSS问题转化为4阶张量联合对角化问题。接下来,基于雅可比连续旋转将张量联合对角化这类非线性优化问题,转化为一系列可获取闭式解的简单子优化问题,并通过交替迭代对多数据集混合矩阵进行更新,进而实现J-BSS。实验结果表明,所提算法具有良好的收敛性能,较之现有的同类型BSS及J-BSS算法具有更高的精度。此外,该算法在分离实际胎儿心电信号方面也表现出良好的性能。A new Joint Blind Source Separation (J-BSS) algorithm is proposed based on joint diagonalization of fourth-order cumulant tensors. This algorithm constructs first a set of fourth-order tensors by computing the fourth-order cross cumulant of the multiset signals. Then, based on the Jacobian successive rotation strategy, the highly nonlinear optimization problem of joint tensor diagonalization is transformed into a series of simple sub-optimization problems, each admitting a closed form solution. The multiset mixing matrices are hence updated via alternating iterations, which diagonalize jointly the data tensors. Simulation results show that the proposed algorithm has nice convergence pattern and higher accuracy than existing BSS and J-BSS algorithms of a similar type. In addition, the algorithm works well in a real-world application to fetal ECG separation.

关 键 词:联合盲源分离 联合张量对角化 4阶累积量 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象