检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘名瑞[1] 王晓霖[1] 王海波[2] 于阳 王刚[1] Liu Mingrui;Wang Xiaolin;Wang Haibo;Yu Yang;Wang Gang(SINOPEC Dalian(Fushun)Research Institute of Petroleum and Petrochemicals,Dalian,Liaoning 116045;Liaoning Company of SINOPEC Fuel Oil Sales Co.Ltd.)
机构地区:[1]中国石化大连(抚顺)石油化工研究院,辽宁大连116045 [2]中国石化燃料油销售有限公司辽宁分公司
出 处:《石油炼制与化工》2019年第3期29-35,共7页Petroleum Processing and Petrochemicals
摘 要:研究了现有黏度预测模型应用于重质船用燃料油黏度预测的可行性,筛选几种常见的黏度物理模型,进行试验数据对比和最优模型选取,基于重质船用燃料油数据库对Cragoe模型进行修正,并结合掺稀降黏试验数据分析混合机制对预测模型相对误差的影响。结果表明,针对目前市场上常用的重质船用燃料油调合组分,采用Cragoe黏度模型进行预测误差较小。这是由于Cragoe黏度模型的预测不受组分油黏度比的限制,在重质船用燃料油中的适用性最好。采用所提出的修正模型,可进一步降低对重质船用燃料油黏度预测的误差。分析多组分调合的结果显示,若组分中的黏度呈梯度分布时可降低预测误差。另外,渣油与稀组分油(简称稀油)调合时,沥青质的络合效应在一定程度上会影响模型的预测准确性。The feasibility to predict the viscosity of heavy marine fuel oil using the existing viscosity prediction models was studied.Several common viscosity physical models were compared and selected the best one based on the analysis of experimental data.The Cragoe model was modified based on the heavy marine fuel oil database and the viscosity reduction data by dilution,the impact of the blending mechanism on the relative error of the prediction model was analyzed.The results showed that for the heavy fuel oil blending components commonly used in the current market,the Cragoe viscosity model has minor prediction errors due to the fact that the Cragoe viscosity prediction model is not limited by the viscosity ratio of the component oils,and is the best model suited for heavy marine fuel oils.The proposed correction model can further reduce the error in predicting the viscosity of heavy marine fuel oil.The analysis of multi-component blending results showed that if the profile of the viscosities distribution of the components is in a gradient form,the prediction error can be reduced.In addition,when the residual oil and dilute components are blended,the complexing effect of asphaltenes affects the prediction accuracy of the model to some extent.
分 类 号:TE626.2[石油与天然气工程—油气加工工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65