小波包样本熵的扬声器异常音特征提取方法  被引量:11

Feature extraction method of loudspeaker abnormal sound based on wavelet packet decomposition and sample entropy

在线阅读下载全文

作  者:王鸿姗 周静雷[1] 房乔楚 WANG Hongshan;ZHOU Jinglei;FANG Qiaochu(School of Electronics and Information,Xi′an Polytechnic University,Xi′an 710048,China)

机构地区:[1]西安工程大学电子信息学院,陕西西安710048

出  处:《西安工程大学学报》2019年第1期57-62,共6页Journal of Xi’an Polytechnic University

基  金:陕西省教育厅专项科研项目(11JK0548)

摘  要:为了更准确地对扬声器异常音进行分类,给出一种基于小波包分解和样本熵的扬声器异常音特征提取方法。在基频陷波预处理后,对信号进行3层小波包分解,计算重构信号的样本熵以构成特征向量。实验结果表明,在小样本的情况下,SVM算法使用小波包分解和样本熵特征提取,分类准确率为93.33%,比能量均值方法高5%,验证了特征提取方法的有效性。To classify the loudspeaker abnormal sound more accurately,a feature extraction method is proposed,in which wavelet packet decomposition and sample entropy are used. After preprocessing of pitch notching,the loudspeaker response signal is decomposed using wavelet packet decomposition of three levels. Sample entropy values of reconstructed signals are calculated to structure the feature vectors. In the small sample case,the results of experiment show that the SVM algorithm with wavelet packet decomposition and sample entropy feature extraction method achieves 93.33% classification accuracy.It′s 5% higher than that of energy mean method,which proves the proposed method.

关 键 词:扬声器 异常音 基频陷波 小波包分解 样本熵 特征提取 支持向量机 短时傅里叶变换 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象