检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张旭博 徐颖[1] 张婷颖 李国栋 ZHANG Xubo;XU Ying;ZHANG Tingying;LI Guodong(School of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, China)
出 处:《西北工业大学学报》2019年第1期57-62,共6页Journal of Northwestern Polytechnical University
基 金:西北工业大学研究生种子基金(Z2017089)资助
摘 要:采用广义回归神经网络(GRNN)方法,在开孔型多孔玻璃16组实验数据基础上,以12组随机数据作为训练样本,4组作为检验样本,建立以多孔玻璃厚度和孔隙率的GRNN模型,得到训练的最佳光滑因子σ=0.1,最大迭代次数为20;结果表明,模型预测值与实验值的平均误差为0.003,建立的模型精度高,预测吸声系数曲线形貌相似度高;该方法有简单、训练样本少、快速、准确等优点。The generalized regression neural network (GRNN) model of sound absorption coefficient of porous glass was built on data from 16 groups gained by experiments, where 12 groups were randomly selected as trained samples and the other 4 groups were as tested ones. This GRNN model which has two parameters, porosity and thickness as the inputs, was set the maximum iteration number 20, getting the optimal trained spread parameter σ=0.1. The results showed that the average error of this model was 0.003, and this model has high precision and the prediction curve of the sound absorption coefficient was very similar to the experiments. The advantages of this method are simple, needing less trained samples, rapid and accurate.
分 类 号:TB34[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7